

ammatiliaisohjelmapari

Superscript 128 on Commodoren uusin tekstink äsittelyoh- jelma. Parhaiten ohjelma soveltuu tiedotteiden, sarjakirjeiden ja suurempien asiakirjojen laatimiseen.

Nopea tiedonsiirto tietueiden välillä, sekä uudenaikaisimmat hakumenetelmät valintaa, hakua ja lajittelua varten, ovat tunnusomaista tälle erinomaiselle ohjelmaista tälle erinomaiselle ohjel-
malle, joka on suuresti avuksi malle, joka on suuresti avuksi
suuritöisissä toimistorutineissa. suuritöisissä toimistorutiineissa.
Tekstinkäsittely näyttöpäätteel-
Tekstinkäsittely näyttöpäätteel-
lat valikon kautta tai suoraan lä - valikon kautta tai suoraan - mahdollistaa yksinkertaisimman käsittelyn suurimmalla joustavuudella. Perustavanlaatuinen käsittelylle. Superscript 128 on tekstinkäsittelyohjelma, jota voidaan mukavasti ja vaivatta käyttää kaikissa ammatillisissa käyttötarkoituksissa.

Tekstinkäsittely:

Moninaisiin Superscript 128:n käyttömahdollisuuksiin kuuluvat: - Kirjeenvaihdon ja asiakirjojen
kirjoittaminen ja muokkaaminen

- Sopimusten, laskujen ja hinnastojen laatiminen
- Pöytäkirjojen, teknisten yhteenvetojen ja esitteiden käsittely ja ylläpito
- Tutkinto- ja diplomitöiden kirjoitus ja korjaus.
Superscript 128 on ihanteellinen tekstinkäsittelyohjelma yrityksille, sihteereille ja opiskelijoille - eli kaikille, joiden täytyy kirjoittaa paljon ja jotka arvostavat yksinkertaista käsittelyä ja antavat arvoa ajan säästölle. Superscript 128 esittäytyy näytöllä asiallisen informatiivisesti. Ensimmäisillä kolmella näyttörivillä (tilanilmaisu-rivillä) ovat tärkeimmät informaatiot:
- sen hetkinen toimintamuoto - sen hetkinen toimintamuot
- pää- ja alavalikkokohtien näyttö ja valintamahdollisuudet,
- lisätietoja kytketyistä toiminnoista (esim. sananjako, sisennys) sekä selväkielisiä tiedoituksia tekstinkäsittelytoiminnoista,
- viimeksi ladatun tiedoston nimi,
- sen hetkinen kursorin paikka (rivi, sarake).
Loput 22 näytön riviä ovat vapaasti käytettävissä kirjoittamiseen. Tekstiä käsitellään työtilassa, josta se voidaan koska tahan-
sa tulostaa näytölle tai kirjoittimelle tai tallentaa muistiin ja ladata jälleen. Sarakeleveys voi tallennusvaiheessa vaihdella 80 ja 240 merkin välillă, tulostettaessa se voidaan sovittaa kulloinkin käytössä olevalle kirjoittimelle. Pitempiä asiakirjoja laadittaessa voidaan tiedostoja helposti yhdistellä.

Toiminnot:

Superscript 128 -käskyt annetaan tavallisesti valikkokohtien välityksellä. Ne myös saadaan koska tahansa näytölle. Mielekäs käskyjen lyhennys takaa sen, että käyttäjä lyhyen totuttelun jälkeen hallitsee usein toistuvat toiminnot. Miellyttävien kohdistimen liikkeiden (sana, kappale, näyttösivu; hyppy: tekstinalkuun, tekstinloppuun, näyttöriville; vaakasuora kierrätys) lisäksi, Superscript 128 tarjoaa useita muita toimintoja:

- Poistaminen: yksittäisten sanojen, rivien, lauseiden, kapnojen, rivien, lauseiden, kap-
paleiden, kohdistimella osoitettujen alueiden, lopun tekstiă kohdistimen paikasta eteenpäin tai koko tekstin poistaminen tai yli kirjoittaminen.
Lisääminen: vaihtolisäyksen ja ylikirjoittamisen välillä, uuden tekstin automaattinen lisääminen jo olevaan tekstiin (tekstilohkoja).
- Erilaisten tekstikokonaisuuksien merkitseminen kohdistimella ja näiden kopiointi, kuljetus, suora siirto tai tallentaminen lē̈ykkeelle.
- Useampikertainen hakeminen ja korvaaminen (erillinen syöttö, 32:een merkkiin saakka), mutta myös kertahaku sekä työtilassa olevan asiakirjan että yhdistettyjen tiedostojen sisällä.
- Tabulointi ja desimaalitabulointi käsittäen koko tekstin: vaakasuorat ja pystysuorat sarkaimet voidaan asetella ja tallentaa yhdessä asiakirjan kanssa; asetetut sarkaimet näytetään jatkuvasti kolmannella näyttörivillä.
Laskutoiminnot mahdollistavat taulukkojen täydentämisen riveittäisillä tai sarakkeittaisilla taulu-

128:lle

kon yhteenlaskulla; rinnakkaislaskenta voidaan suorittaa ohjelmaan kuuluvalla taskulaskimella (4 peruslaskutapaa, prosenttilasku , max. 10 desimaalia).

Tekstin taitto, muotoilu:

Automaattisen, poiskytkettävän sanantaiton (sanan itsenäinen siirto seuraavalle riville) lisäksi voidaan käyttăä seuraavia toimintoja koko tekstin, mutta myös yksittäisten kappaleiden muotoiluun:

- jakoehdotuksen ja tasapalstaisuuden asettaminen (erityisen vaikuttava kun sanantaitto on kytketty päälle)
- muutettava vasen tai oikea tekstiraja (sisältäen automaattisen sisennyksen), rajauksen poisto);
- reunatasaus sanojen väliin lisätyillä välilyönneillä/tekstin sovittaminen
- oikea reunatasaus, kuinka monen tahansa tekstirivin keskittäminen;
- kaksi otsikkoriviä, kaksi huomautusriviä sivun alareunassa, varsinkin juoksevaa sivunumerointia varten sekä lisäksi vaihtelevia tarpeita varten parillisilla tai parittomilla si-
vuilla; oikea tai vasen reuna voidaan asettaa erikseen, aloitussivunumero voidaan määritellä uudelleen.
- Vaakasuora offset (ensimmäisen painosarakkeen siirtảminen koskien kaikkia sivuja, tai koskien parittomia ja parillisia sivuja erikseen, esim. molemmin puolin painettujen dokumenttien rei'itystä/nitomista varten.
- Pystysuoran painotuotteeen siirtäminen (esim. kirjeissä, joissa on esipainettu otsikko). - Tyhjät rivit tekstissä, rivin eteenpäin siirto kappaleiden jälkeen, rivivälit ($1 / 2,1,11 / 2$).
- Sivutaiton välitön ja vâlillinen aikaansaaminen.
- Kirjoituksen pysäyttäminen keskellä tekstiä sisältäen (erillissivupaino, kirjasinkiekonlissivupaino, kirjasinkiekon-
vaihto) kommentointimahdolvaihto) k
lisuuden.
- Kapeakirjoitus, levennyskirjoitus, paksunnos, alleviivaus, indeksi, eksponentti.

Kirjoitin-ohjausmerkin sovittaminen on jo Commodore-kirjoittimilla huomioitu, mutta sitä voidaan myös kirjoitinmäärittelytiedoston kautta muunnella.

Joka hetki mahdollinen nopea vaihto editoinnin ja tekstinäytön välillä antaa mahdollisuuden käyttäjäystävälliseen layoutin (luonnoksen) tekemiseen.

Monipuoliset näyttömahdolli suudet ovat kảytettävissänne: jatkuvasti, yksitellen, määrätystä sivunumerosta lähtien, saman tekstin useampikertainen näyttô, ainoastaan parilliset/parittomat sivut.

Tulostuksen vaihto näyttöpäätteellä kirjoittimelle mistä sivusta tahansa.

Esipainettuja kirjelomakkeita voidaan täyttää joko manuaalisesti tai selektiivisesti tiedostosta, jossa on joitakin määrättyjä standarditietoja. Käyttö esim. muistiot tai sarjakirjeet tai sitten täyttö tapahtuu tietokannasta (esim. asiakastietokanta) tai Superbase 128 tiedostosta.
Standarditekstiin voidaan määritellä vaihtelevan tai määrätynmittaisia tyhjiä tiloja, jotka täytetään tekstillä valikoiden (selektiivisesti).
Superbase 128 voidaan jälkikäteen ladata Superscript 128:sta käsin, jolloin käytettävissä on molemmat ohjelmat.

Jatkuu sivulla 4.

Pugy dryyn

Reijo Lundahl
1541-LEVYASEMA
Commodore 64
Kaikki tarpeellinen tieto 1547-levyasemasta Com-modore-tietokoneen käyttäjälle. Asioiden omaksumista helpottavat selvä rakenne, monet esimerkit ja mukana seuraava levyke. 208 s.
Ovh 129,-

Myynti:
Laitteiden
jälleenmyyjät ja hy-
vin varustetut kirjakaupat.
AMERSOFT

Puhuva tietokone ei sinänsä ole Suomessakaan uutuus, mutta että sen kykenee nyt hankkimaan kuka tahansa, se on jotain uutta.

Mikä on

PS 64-puhemoduli?
PS 64-puhemoduli on Commodore 64 tai 128 tietokoneeseen kehitetty kotimainen puhesynteesimoduli. Se on suomenkielinen ja omaa rajoittamattoman sanavaraston. Moduli lausuu jokaista kirjainta vastaavan äänteen ja tekee aritmeettisia suorituksia, laskee yhteen, vähentäă jne. Laulaminenkaan ei ole sille vierasta. Jokainen voi panna sen laulamaan mitä haluaa. Lyhyesti sanoen PS 64 puhuu mitä tahansa tekstiä sellaisena kuin se kirjoitetaan.

Kotimaista

huipputekniikkaa
PS 64 on laatutuote, jolle alan erikoislehdetkin ovat antaneet positiiviset lausunnot:
''Kotimaista huipputekniikkaa..." Mikro 6/85
''Suomalaisvalmisteinen PS 64 peittoaa kilpailijansa mennen tullen..." Bitti 2/86
''PS 64-puhemoduli mahdollistaa korkeatasoisen puheäänen tuottamisen..." Tekniikan maailma 3/86.
Teknologian Kehittämiskeskus eli TEKES osoitti arvostuksensa osallistumalla huomattavalla avustuksella PS 64:n tuottamiseen.

Kenelle PS 64 sopii?

Puhemoduli sopii jokaiselle Commodoren käyttäjälle. Ensinnäkin se on erinomainen apu esim. 3-vuotiaalle aloittelijalle, joka e osaa vielä lukea. Puhemodulin avulla hän oppii löytämään oikeat näppäimet ja vähitellen opetusohjelmia hyväksikäyttäen oppii sekä kirjoittamaan että lukemaan. Virjoittamaan etta lukemaan. jolla saattaa olla vaikeuksia kirjoittamisessa, puhemoduli korjaa hänen virheitään.

Hauskin käyttömuoto lienee ns. kuunnelmageneraattorin käyt tó, jolla voi kirjoittaa aannikuunnelmia, vuoropuheluita, haastat teluja, seikkailukertomuksia ym.

Välitöntä hyötykäyttöä tarjoaa sokean käyttäjän sanojenkäsittelyohjelma, jolla hän kykenee tuottamaan tekstiä lähes yhtä vaivattomasti kuin näkevä. Puhekykynsä menettäneelle Commodore 64 ja puhemoduli suovat uuden halvan ja helppokäyttöisen mahdollisuuden kommunikoida. Käyttösovelluksia löytyy puhemodulille runsaasti.

Tämän päivän

opetusväline

- Kuluhallitus on yleiskitjeelläản Y 14/86 ilmoittanut koululautakunnille hyväksyneensä Commodore 64 ja 128 tietokoneet varustettuna PS 64-puhemodulilla erityisopetuksen käyttöön. Koska laitteiston käyttö ei edellytä minkäänlaisen atk-kurssin käyntiä, nimitetäänkin laitteistoa lähinnä uudenlaiseksi opetusvälineeksi eikä tietokoneeksi. Puhuvan kotimikron käyttö on yhtä yksinkertaista kuin sähkökirjoituskoneen jos ei helpompaakin. Nyt kun kodeissa on '"pelihimot"' jo melko lailla tyydytetty puhemoduli muodostaa sopivan sillan kotimikron laajemmalle hyötykäytölle. Opetusohjelmia on saatavana runsaasti sekä mykkinä että puhuvina.

Valmistaja
 KOULUN

ERITYISPALVELU OY
Hollantilaisentie 7
00330 HELSINKI
puh. 90-480033
Tiedot antoi
ESKO PALMU

Myynti

Commodore myyntipisteiden
kautta keväällä.

Kiipeilypallot on yksi Puuhamaan uutuuksista kesällä 1986.

Commdore Puuhamaassa Yksi suosituimpia Puuhamaan toimintoja on ollut TV-pelit, jotka nekin ovat pelattavissa ilman erillisiä laitemaksuja. Pelikoneina on joka vuosi käytetty Commodore kotimikroja. "Meillä on vain hyviä kokemuksia Commodore mikroista niin kestävyyden, käyttäjäystävällisyyden kuin muidenkin vaatimusten suhteen", toteaa Puuhamaan toimitusjohtaja Erkki Mattila ja jatkaa, "tänà vuonna käytössä om vielä muutama Vic-20 - haluamme säilyttää ohjelmassa pari hyvää peliä - sekä samoin $\widetilde{\mathrm{C}}-16$, mutta pääpaino on C-64 koneilla, joita käytössä on kymmenkunta, jokaisessa eri peli. Pelivalikoima uudistuu siten, että ainakin peliuutuudet karttapelit, liikennepeli, Endless, Oberonin luolat, tennis ja basket ball ovat mukana. Peleja ilmestyy koko ajan uusia, joten lopullinen ohjelmisto muotoutuu kesän kynnyksellä."
Puuhamaassa moni sellainen, vanhempi tai nuorempi, joka ei ole itse kokeillut pelaamista on voinut päästä kosketuksiin tämän mielenkiintoisen asian kanssa.

PUNHAMAASSA kesän paras päivä

Yhdeksi Etelä-Suomen merkittävimmäksi perhematkailukohteeksi muodostunut Puuhamaa Janakkalan Tervakoskella avaa ovensa kesäksi 1986 huomattavasti uudistuneena. Uusien toimintojen lisäksi on Puuhamaan palvelutasoa ja ympäristön viihtyvyyttä lisätty.

Tervakosken Puuhamaan keskei nen jo monen perheen miellyttăväksi havaitsema toimintaperiaate on se ettă alueelle on vain yksi sisäänpääsymaksu, mutta ei erillisiä laitemaksuja. Perheen huvittelubudjetti pysyy kurissa ja hauskaa saa pităă mielin mäărin. Parhaisiin toimintoihin voi palata miten monta kertaa haluaa ja tekemistä löytyy niin pienille kuin isoillekin.
Toinen Puuhamaan oleellinen piirre joka myös erottaa sen perinteisistä huvipuistoista on se ettă toiminnot eivät perustu mekaanisiin laitteisiin, vaan edellyttävăt enemmăn tai vähemmăn hauskanpitäjän omaa aktiivisuutta - perheen yhteistä puuhailua. Erilaisia toimintoja löytyy kymmeniä. Kesän 1985 uutuus vesiliukumäki saa tänä vuonna rinnalleen toisen erityyppisen vesiliukumäen. Vesileikit ovat muutenkin hyvin edustettuina, koska Puuhamaa rajoittuu puhdasvetiseen Alasjärveen. Oma uimaranta, soutu- ja polkuveneet ovat vapaasti kăytössää sekä erillinen veneilyallas vesipyörineen ja kumiveneineen antaa runsaasti mahdollisuuksia lảmpimăn kesảpăi-
vän viettäjälle. Uudet pesu-puku- ja saunatilat tarjoavat miellyttävät puitteet vesileikeille ja saunassa voi lämmitellä, mikälì kylmä yllättää. Voi siellä ottaa myöskin kunnon löylyt ja pulahtaa järveen vilvoittelemaan.
Hyppiminen ja pomppiminen on myöskin hauskaa lapsista ja on myoskin hauskaa lapsista ja
kyllä aikuisiltakin nauru irtoaa, kun ilmamäkeen asti ennätetään. Kesän uutuus pallomäki valtavine jättipalloineen on ilmamäen kilpailija. Trampoliinit ja hyppyaasi antavat myös mukavaa liikuntaa.
Vauhdin hurmaa voi kokeilla uudella lokariautoradalla tai tyytyä poikemaan erikoisia polkutya poikemaan erikoisia polku-
autoja. Pyöriä löytyy erilliseltá autoja. Pyöriä löytyy enilliseltä
fillaricrossiradalta ja epäkeskopyöräradalta - hassunhauskaa ajelua, josta riittää riemua paits ajajalle myös katselijoille. Rauhallisemmin voi ajella istumalla aluetta kiertävän junan kyytiin.
Tekemistä tosiaan riittää Puuhamaassa, sillä alueelta löytyvät myös jousiammuntarata, pallomeret, TV-pelit, minigolf, keilaja curling-radat, intiaanileiri, las ten liikennekaupunki, köysirata, viidakkorata, spindelirata ja paljon muuta.

Matkailijaa ajateltu

Perhematkailijan kannalta miellyttävä seikka on sekin, että auto ajetaan alueen sisällä olevalle parkkipaikalle. Autossa voi siten vapaasti pistäytyä kesken hauskanpidon hakemassa vauvanvai pan, eväitä tai muuta tarpeellista Tavaroita ei tarvitse turhaan kanniskella mukana, vanhemmat voi vat osallistua lasten touhuihin. Lähes kaikki Puuhamaan toiminnot ovatkin sellaisia, että ne soveltuvat sekä lapsille ettà aikuisille.

Puuhamaassa kuluu helposti aikaa ja silloin tulee nälkä. Apua tarjoaa Puuhamaan kahvila/ravintola ja alueen uudet kioskirakennukset. Myöskin omien eväiden syöminen tai vaikka makkaroiden grillaaminen on mahdollista tarkoitukseen varatuilla grillipaikoissa ja ruokailukatok ssa
Puuhamaa löytyy Tervakoskel ta Helsinki-Hämeenlinna-tien varrelta. Kesällä 1986 Puuhamaa on auki 4.5.-17.8. joka päivä klo 10-19. Perheen yhteinen retki Puuhamaahan muodostuu riemastuttavaksi kokemukseksi niin lapsille kuin vanhemmillekin

TÄÄLTÄ TULLAAN KESÄ!

Kevätväsymys väistä! Tarkoitan sitä, joka alkaa elokuussa! Täăltä tullaan ja vauhdilla! Kesả on täällả mină päivănä tahansa ja se tuo tullessaan harrastuksia, ystäviä, toiveita, haaveita ja kaikkea muuta kivaa.

Opiskelijan aamukammassa on piikkejä nyt tosi hintsusti. Vielă muutama tentti tai koe, ja reppu pääsee ansaitulle lomalle. Kesả tarkoittaa monelle taukoa opiskelussa. Toiset keräävät voimia seuraavaa haas tetta varten, olipa se sitten uusi luokka, ihan uusi opiskelupaikka tai sitten työelämään siirtyminen. Joka tapauksessa kesä tuo pienen tauon harmaaseen arkeen. Tästả tauosta kannattaa ottaa kaikki irti.
Monella on tiedossa kesäduuni, joka ei kylläkään katkaise aamuherätyksiä, mutta tuopahan ainakin vähän taskurahaa. Toiset preppaa syksyä varten ja toiset taas lảhtevät kauan odotetulle matkalle jonnekin... Löytyy muuten sellaisiakin, jotka yhdistävät kaikki edellä mainitut ehdotukset. Innokkaimmat mikroharrastajat leikkasivat jo viime lehdestä ilmoittautumiskupongin irti ja viettävät kohtapuolin rentouttuvan mielenkiintoisan lomaviikon mikroleirillä, tavaten siellă ihan uusia kavereita ja nauttien uusista kokemuksista.
Kaikilla on oma tapansa viettää lomaa, ja väitän että ne ovat kaikki yhtä hyviä. Niin myös Poke\&Peek ja toimituksen porukka pitävät pienen tauon. Lehti palaa taas postiluukkuun syksylă uusin kujein. Vietä oikein hyvää kesäă, tapaa uusia ja vanhoja tuttavia ja rusketu kunnolla!

Kesäterveisin!

Jussi

Commodore C-16 Club on perustettu

Arvoisa toimitus!

Luettuani Poke\&Peekin nume rosta 1/86 Commodore kerhois ta, päätin perustaa ja ottaa harteilleni Commodore C-16 kerhon Kerho on avoin kaikille C -16 ja Plus 4 kotimikrojen käyttäjille Jäsenmaksua ei ole, mutta kerholainen maksaa itse posti- ja kasettikulunsa. Toimintana tullee olemaan kasetti- tai lerppulehden teko ja ohjelmakirjaston perustateko ja ohjëmakirjaston perusta-
minen. Myöhemmin pyritään autminen. Myohemmin pyntaãn aut
tamaan nuorempia kerholaisia
omien ohjelmien teossa. Kun haluat liittyä kerhoon, lähetä nimesi ja osoitteesi lisäksi ainakin 3 $\mathrm{mk}: n$ arvosta leimaamattomia postimerkkejä kerhomateriaalin lähettämistả varten, ja luettelo laitteestokokoonpanostasi. Vaihtoehtona postareille on omatekoisen ohjelman lähettäminen ohjelmakirjastoon. Jäseneksi voi ilmoittautua Pasi Tschokkiselle, osoitteeseen Mäntytie 9, 12540 LAUNONEN, puh. (914) 62204.

Commodore 128D oli suurin ihmettelyn aihe kun yli 70 mikroharrasta jaa kokoontui Info's Computer Clubin 2-vuotissynttäreille Savonlinnaan.
Paikalliset mikroilijat tutustuivat mm. linjaliikennöintiin CBM-64:lla, pankin akt-järjestelmään ja pelasivat lopuksi jännittävän mestaruusturnauksen.
Tilaisuuden järjesti Savonlinnan Kirjakauppa yhdessä Kansallispan kin kanssa.

Peras \&p

Tietomaa Oy Oulussa aloitti pohjoisen Suomen mikrokoulutukset Commodore-luokassa jo ennen virallisia avajaisia, jotka pidettiin 8.4.86. Commodore koulutukset tapahtuvat uusilla 128 D-tietokoneilla Commolassa, koko perheen toiveluokassa. PCI-Datalla on myös koko tuotevalikoim\& esillä näyttelytilassa Mikrolassa.
Mikrola on tietokonelaitteistojen ja ohjelmistojen esittely- ja kokeiutila, jossa Tietomaa Oy esittelee kảvijoille laitteita ja ohjelmia. Mikrolassa on esillă Commodoretuotteet kuusnelosesta yritysmikroihin sekä uusimmat ohjelmat ja oheislaitteet. Mikrola on auki yleisolle arkipazivisin klo $15.00-$ 19.00. Koulutus- ja nảyttelytilo jen lisảksi Tietomaassa on yleisnäytäntöjen pitoon tarkoitettu

Computaario. Siellä voidaan järjestääă erilaisia esityksiä käyttäen hyväksi tietokoneita sekả videotykkiä ja laitteistoja.
Computaariossa pyörii toukokuun alusta elokuun puoliväliin lauantaisin ja sunnuntaisin puolentunnin mittainen show alkaen aina klo 10.30
,...Tietomaa on jo tänă kevăănă mitä mainioin luokkaretkikohde, silläa sieltả voi varata ajan sekả eri-
laisiin ryhmäesityksiin Computaariossa ettă laitteisto- ja tuoteesittelyyn Mikrolassa.
Tietomaan Commodore-luokassa järjestetäăn monipuolisia koulutustilaisuuksia sekä kotimikron käytön aloittajalle ettá tietotekniikan ammattilaiselle. Parhaillaan on menossa kansalaisopiston edulliset perhekurssit, joista saa lisätietoja soittamalla Oulun kansalaisopistoon.
Kesảkuussa kǎynnistyvät Ou lun Nuorisotoimiston kanssa yhteiset mikroleirit. Leireilla on opetusta viitenă päivănä viikossa
puolipảivảả. Năistả kannattaa puolestaan kysellä lisätietoja Oulun Nuorisotoimistosta.

Lisäksi Pohjalainen pitää yhdessä Tietomaan kanssa mikrokerholaisille tarkoitettuja leirejä joissa opetusta on samoin puolipảivăă viitenă pảivănă viikossa Mikali joku tarvitsee majoitusta voi tiedustella edullista hotelimajoitusta kurssin ajaksi
Eräănả koulutuksen kohderyh mänä on opettajat, joilla on par-- haillaan menossa Logo-kurssi. . Tarjonta Commolassa on jo
luvassa paljon lisăả, lupaa koulutuspäällikkö Kari Holma
Tietomaahan kannattaa tutustua vaikkapa lauantaina 24.5.86 jolloin siellả on avoimien ovien pảivà. Silloin Pohjalainen yhdes sả PCI-Datan asiantuntijoider kanssa esittelee Commodo re-mikrotietokoneita, ohjelmia ja oheislaitteita.

Tietomaa Oy:n osoite on
Kansankatu 54, 90120 OULU Puih. 981-227 911

Jatkoa sivulta 1.

Superscript 128 ja Superbase 128

- ammattilaisohjelmapari

Commodore 128:lle

Superbase 128 on 128:Ile kehitetty uusi tietokantaohjelma. Nopea tiedonsiirto tietueiden välillä, uudenaikaisimmat hakumenetelmät ja lajiittelut ovat ominaista tälle erinomaiselle ohjelmalle, joka osoittautuu vaivalloisten toimistotöiden kohdalla todelliseksi helpotukseksi.

Commodore 128:lle uusittu tietokantaohjelma Superbase 128 on arvokas helpotus suuritöisissă toimistorutiineissa. Superbase 128 hallitsee 15 tidoston tiedot yhta tietokantaa kohti; kulloinkin 2 tiedostoa voidaan yhdistǎả toisiinsa (link), jotta voitaisiin vaihtaa tietoja tai tietokenttiä voitaisiin päivittää. Yksittảisten tietokantojen välillä voidaan hel posti siirtyẳ ja siirtăả tietoja. Tietokantojen ja tietueiden lukumäăräả rajoittaa ainoastaan valitun massamuistin kapasiteetti
Korkeasta käyttäjämukavuudesta pita̋văt huolta apunäytöt, joita voidaan myös itse tehdă ja lisätă, näytön kopiointi kirjoittimelle (joka hetki mahdollisuus tulostaa náytto paperille), tietoluet telot, tiedostotilan näyttö ja le vykkeenhallinta ohjelma (sisältäen tiedostojen hakemisen ja sisaänviemisen).
Joustava tiedoston muotoilu, tiedoston muutos ja tiedoston taaydentäminen:

Muunneltavissa olevilla näyttǒpohjilla voidaan itse määritellă tietuemuoto tiedostosuunnittelussa. Kảytettǎvissả on:
tietueen pituus: 1108 merkkiä tietokenttă yhtả tietuetta kohden:
avaimien lukumäără eli
indeksikenttä:
näyttơsivuja yhtä tietuetta 1

Kentăt:
Pituudet:
avain eli indeksi
30
teksti-:
9, max.
numero-:
4 desimaalia
päivămäärä-:
7 tai 11
vakio-: $\quad 30$
tulos-: kts. numerokenttä

Jokaiseen tiedostoon voit luoda muistináytön (23 năyttơriviă) joka sisältäă tarkan kuvauksen tiedostosta.

eet lajitellaan joko nousevaan tai laskevaan järjestykseen. Päiväykset lajitellaan oikeassa järjestyk sessä; vuosi, kuukausi, păivă

Tiedonhaku:

Haku voidaan kohdistaa mitả erilaisimpia kriteereitä hyväksi käyttäen suoraan mihin tahana tietueeseen tiedostossa, joka on

C. C:

Uudelleen muotoilua (esim. kenttäpituuden suurentaminen, uusien kenttien lisääminen) seuraa automattinen tiedoston järjestely ilman tietohukkaa: oleellinen edellytys monipuoliselle ja pitkäaikaiselle tietokanta tyőskentelylle.
Muutokset ja lisäykset voidaan tehdă suoraan tietueelle tai näyttöpohjalla.

Valikointi, haku, lajittelu: Nykyaikaisimmat hakumenetelmät, avaimen, osa-avaimen, tai suoran loogisen vertailun alfakäsitteitä hyväksi käyttäen ja hakukriteerien loogisen yhdistämisen kautta, mahdollistavat tietojen nopean loytämisen ja valinnan.
Lajittelussa määritellään kenttä, jonka mukaan tiedoston tietu-
täynnă informaatioita. Sitäpaitsi taltioitujen tietojen analysointi on mitä moninaisimmalla tavalla mahdollista.
Voidaan hakea esim. kaikki asiakkaat tietyltä postinumeroalueelta, jäljittää huonosti maksavat asiakkaat tai päivittää lajivalikoimaa.

Molemmat ohjelmat saatavissa kaikilta Commodoren edustajilta.

UUIIA

CP/M-OHJELMISTOA

C-128:Ile

MetaSoft Ky aloittaa huhtikuun alusta lähtien kotimaista tuotantoa olevan BUSINESS-ohjelmistosarjan markkinoinnin. Sarja koostuu kolmesta kaupallishallinnollisesta sovelluksesta ja ne on tarkoitettu uuden polven CP/M-mirkoille, Commodore 128:lle.

Commodore C128:Ile

Kaupallishallinnollisia ohjelmia on jo pitkäăn odotettu näiden koneiden merkittävässä ostajaryhmässä, pienyrityksissä, kirjan-pito- ja tilitoimistoissa.

BUSINESS-ohjelmasarja koostuu kolmesta ohjelmasta, jotka helpottavat yrityksen kirjanpitoa, laskutusta ja reskontraa. Ohjelmat ovat helppokäyttöisiä ja niiden mukana toimitetaan selkeä käyttöohje. Ohjelmistot ovat erittäin tehokkaita ja edullisia, ja niiden hintahaarukka on 4000 5000 markkaa. Ohjelmien käytöstä järjestetäăn myös koulutustukipalveluja.

Kirjanpito täyttäả kirjanpitolainsäädännön asetukset ja sisältäả lisänaa erittä̀n kehittyneen raportoinnin. Ohjelmaan voidaan sisällyttää myös kustannuslaskenta. Ovh. 4.500,-
Laskutus ja myyntiresontra sisältää hyödyllisiä tulostusmalleja, mm . reskontrayhteenvedon, laskupäiväkirjan, suorituspäiväkirjan, suoritusten seurannan, karhukirjeiden ja korkolaskujen tulostuksen. Ohjelma pitäă huolen vapaavalintaisista laskutustileistä, laskutyyppien valinnasta, maksuehdoista ym. Ovh. 4.940,--
Ostoreskontra kirjaa laskut, seuraa tilivelkaa ja helpottaa yri-
tyksen maksurutiineja. Raporttimallit ovat yhtä kehittyneitä kuin kirjanpidossa ja laskutus/myyntireskontrassa. Ovh. 3.860,-.
Näden ohjelmistouutuuksien lisäksi MetaSoft tarjoaa suoraa yhteyttä USA:n johtaviin ohjelmistoketjuihin. Näiden kautta asiakkaalle tarjotaan express-toimituksena lisäkustannuksitta noin 500 ammattimaista PC-ohjelmistoa ja $100 \mathrm{CP} / \mathrm{M}$-hyötyoh jelmistoa. Tuoteluettelomme sisältää mm. kymmeniä ohjelmankehitysvälineitä, kieliăa ja tekoälyohjelmistoja, joita tăhän saakka on ollut lähes mahdotonta saada Suomesta.

BUSINESS-kirjanpito

BUSINESS-kirjanpito on suunniteltu pienyritysten ja tilitoimistojen tarpeisiin. Ohjelmisto soveltuu myös esim. maatalousyrittäjille, vaikka heiltä ei kaksin-
kertaista kirjanpitoa edelly tetäkään. BUSINESS-kirjanpidon etu tilitoimistopalveluihin on nopeasti saatavat, helppolukuiset raportit, jotka auttavat ja nopeuttavat talouspohjaisten päätösten tekoa.
Ohjelmistoon liittyy joukko ylläpito-ohjelmia, joilla muutetaan tilikarttaa, tasetta, tuloslaskelmaa ja kustannusraportin muotoa.
Käyttöä juohevoittamassa on automaattinen raportintulostus, Etukăteen voidaan mäărätă, kuinka monena kappaleena mităkin raportteja ajetaan kuun vaihteessa.

BUSINESS-ostoreskontra

Yrityksen ostoreskontra sisältäà paljon toistuvaa ja aikaavieväă rutiinityötä. BUSINESS-ostoreskontraohjelman avulla voidaan säăstäă aikaa ja tehostaa laskujen
kirjaamista ja seurata tilivelan kehittymistä. Ohjelma on erittäin helppokäyttöinen.

BUSINESS-laskutus/
 myyntireskontra

Ohjelman avulla tulostetaan laskuja ja seurataan laskujen maksua. Ohjelma sisältää reskontrayhteenvedot, laskupäiväkirjat, suoritusten seurannan, karhukirjeiden, korkolaskujen, rekisterien tulostuksen, laskutuslisät ym.
BUSINESS-ohjelmien mukana toimitetaan suomenkielise käyttöoppaat. Oppaat ovat selkeät ja niiden avulla henkilo, joka ei ole aikaisemmin käyttänyt atk:ta, pystyy nopeasti omaksumaan ohjelmien käytön. Järjestämme myös koulutustukipalveluja ohjelmien käyttảjille.

ROMEEAPEEET

KONEKIELI,OSAII

Jukka Marin

Muisti ja sen käyttö Kuten jokainen BASICia tunteva tietää, BASIC-ohjelma muodostuu riveistä, joilla jokaisella on oma numero. Riviä voidaan sitten 'kutsua'' muista ohjelman osista sim. GOTO- tai GOSUB-kässim. GOT , yilla. Konekieliohjelma sensijaan muodostuu yhtenäisestä käs-
kyjonosta, johon ei sisälly mitään tietoa '"riveistä"' tms. Siksi konekieliohjelmissa ei voida "hypätä" millekään tietylle riville, vaan tiettyyn muistipaikkaan. Tämä saattaa tuntua hankalalta, mutta siihen tottuu nopeasti. Tällä menetelmällä hyppyihin kuluu vähemmin muistia ja nopeus on suurempi kuin BASICissa
Aluksi hieman yleistä tietoa mikroprosessorin ja muistin yhteistyöstä. Mikroprosessori valitsee tietyn muistipaikan eli osoittaa sitä osoitelinjojen (address bus) välityksellä. Tietokoneen muu elektroniikka huolehtii siitä, ttä mikroprosessori saa tiedon esim. juuri BASIC-ROM-muistista tai RAM-muistista. Itse varsinainen tieto siirretään data-linjoja (data bus) pitkin. Osoitteita on 16 ja datalinjoja 8. Siirto tapahtuu erittäin nopeasti, sillä yhden muistipaikan sisältö siirtyy muistista prosessoriin tai päinvastoin n. 0.0000005 sekunnissa (0.5 us). Suuri nopeus on tarpeen, jotta ohjelma voisi toimia nopeasti. Yhden konekielikäskyn suorittamiseen vaaditaan l... 5 muistinosoitustoimintoa, joista jokainen vie aikaa yhden kellojakson (1 us). Tästä puolet kuluu prosessorin sisäisiin toimintoihin, jotka vaativat myös ylimääräisiä kellojaksoja.
Vaikka muisti onkin yhtenäinen (C-64:ssä RAM-muisti on rakennettu kahdeksasta 64 kilobitin dynaamisesta RAM-piiristä), sen voidaan ajatella muodostuvan 256 sivusta, jotka taas puolestaan sisältävät kukin 256 muistipaikkaa eli tavua. Tämän ajattelun etuna on, että osoitelinjan ylempi puolisko (HB) valitsee yhden em. sivuista ja LB yhden ko. sivun tavuista. Esim. 0-sivun $\mathrm{HB}=0$, 1 -sivun $\mathrm{HB}=\mathrm{j}$ jne
Seuraavaksi on tarpeen tutus tua ns. osoitusmuotoihin (addres sing modes), jotta ymmärtäisim-

Viime kerralla tutustuimme lukujärjestelmien muunnoksiin ja 6510 -prosessorin rekistereihin. Nyt tarkastelemme, miten konekieliohjelma on tallennettu muistiin ja miten se toimii. Lisäksi tutustumme 6502 (6510)-prosessorin käskykantaan, jotta innokkaimmat voisivat jo aloittaa ohjelmoimisen. Valitettavasti käskyjä vastaavat heksadesimaalikoodit eivät mahdu mukaan tähän osaan, joten ohjelmoimista voi harrastaa vasta Assembler-kielellä. Tietysti koodit voi katsoa esim. Programmer's Reference Guide:sta.
me, millaisilla käskyillä mikroprosessori siirtää tietoa itsensä, muistin ja IO-piirien välillä. On huomattava, että 6502-konekielessä KAIKKIEN 2-tavuisten osoitteiden ALEMPI tavu (LB) on muistissa ennen ylempää (HB), joka on välittömästi seuraavassa muistipaikassa. 6502-konekieleen kuuluu seuraavat osoitusmuodot:

Seuraavassa esitellään em. osoi tusmuodot yksitellen esimerkkien avulla. Millään käskyllä ei ole kaikkia osoitusmuotoja (ks. käskytaulukko seuraavassa Poke\& Peek:ssä). Rekisterejä merkitään seuraavasti: . $a=a k k u, . y=$ indeksirekisteri $y, . x=$ indeksirekisteri

x.

IMPLIED: Tässä osoitusmuodossa ei käskyyn kuulu parametreja, kuten esimerkiksi SEC (SEt Carry flag) tai PLA (PulL Accumulator from stack). Käsky vie yhden tavun eli muistipaikan
IMMEDIATE: Nyt käskyyn kuuluu yksitavuinen parametri, joka on käskyä seuraavassa muistipaikassa. Esim. LDA \# \$11 lataa .a:han luvun \$11; ADC \#\$01 lisää alkuun ykkösen; LDY \#\$42 lataa .y:hyn luvun \$42. "\#" ilmaisee, että on kysymys juuri IMMEDIATE-osoitusmuodosta.

ABSOLUTE: Käskyn jälkeiset kaksi tavua sisältävät muistipaikan osoitteen. Tässä muistipaikassa oleva luku on käskyn parametri. Osoitteen alempi tavu (Low Byte) on käskyä seuraava tavu, HB sitä seuraava. Esimerk-
kejä: LDA \$D021 lataa akkuun kuvaruudun värin, STY \$D001 asettaa sprite $\# 0 ; n$ y-koordinaat tiin .y:ssä olleen luvun.

ZERO PAGE: 6502-konekielen erityisominaisuutena on 0-sivun osoitusmuoto, joka vastaa muuten ABSOLUTE-muotoa, mutta käskyä seuraa vain yksi osoitetavu , LB. Mikroprosessori olettaa tätä osoitusmuotoa käytettäessä HB:n olevan 0 , eli muistiosoitus tapahtuu nollasivulle. Tämä osoitusmuoto säästää muistitilaa ja on myös absoluuttista osoitusta nopeampi, tarvitseehan mikroprosessorin noutaa muistista yksi tavu vähemmän. Esimerkiksi LDX \$CB lataa tiedon parhaillaan painettavasta näppäimestä.

INDEXED ABSOLUTE: Nyt käskyä seuraa jälleen 2-tavuinen osoite, kuten ABSOLUTE-muodossakin. Erona on kuitenkin se, että tähän osoitteeseen lisätään indeksirekisterin (.x tai .y) arvo ennen kuin osoitetta käytetään parametrin hakemiseen. Tämä toiminto on erittäin käyttökelpoinen, kun halutaan esim. osoittaa taulukon eri alkioita in-
deksirekisterin avulla. On kuitenkin huomattava, että indeksirekisterin avulla voidaan käsitella ainoastaan 256-paikkaisia taulukoita (edellyttäen, että jokaista paikkaa kohti on vain yksi tavu). Esimerkkejä: LDA \$8000,Y lataa akun muistipaikasta, jonka osoite on $\$ 8000+. y: n$ arvo; INC \$D000,X kasvattaa muistipaikan (\$D000 + .x:n arvo) arvoa.
INDEXED ZERO PAGE: Käskyä seuraa yksi osoitetavu, jo hon lisätään ko. indeksirekisterin arvoon ja tulosta käytetään parametrin sisältävän tavun osoittamiseen. HUOM! Jos summa on >255, tuloksesta vähennetään 256 , jotta tulos osoittaisi edelleen 0 -sivulle. Siis osoitteen $\mathrm{HB}=0$, vaikka tulos olisikin yli 255. LB:n arvo sensijaan on suoraan lasku tuloksen LB.
RELATIVE: Suhteellista osoi tusmuotoa käyttävät 6502:ssa ainoastaan ehdolliset hyppykäsky (eräänlaiset IF-lauseet). Käskyà seuraava tavu sisältää etumerkillisen luvun, joka ilmaisee hypyn suunnan ja pituuden tavuina Hyppy suoritetaan paikkaan, joka saadaan lisäämällä tähän lukuun ehdollista käskyä VÄLIT TÖMÄSTI SEURAAVAN KÄSKYN osoite. Hyppy voi ta pahtua välillä $-128 \ldots+127$ tavua.

INDEXED INDIRECT: Tämả ja seuraava osoitusmuoto on teh ty korvaamaan 6502:sta puuttu via 16-bittisiä rekistereitä. Käskyà seuraa jälleen yksi osoitetavu, johon lisätään indeksirekisterin .x arvo. Saatu tulos (samoin kuin INDEXED ZERO PAGEssa) osoittaa 0 -sivulle. Varsinainen parametrin osoite saadaan TÄSTÄ JA SITÄ SEURAAVASTA 0 -sivun muistipaikasta, ensin LB ja sitten HB. Voidaan ajatella, että tämä osoitusmuoto toimii kuten ABSOLUTE, mutta osoitetta ei ilmoitetakaan heti käskyn jälkeen, vaan 0 -sivulla. Tälle on har voin käyttöä, paitsi jos .x:ään la dataan ensin 0. Silloin käskyn jäkeinen tavu ilmoittaa suoraan 0 -sivun ns. pointerin osoitteen Pointeri puolestaan osoittaa lo pullisen muistipaikan. Tällä osoitusmuodolla saadaan aikaan pi tempiä taulukoita kuin INDE XED ABSOLUTElla, koska 8-bittisen indeksirekisterin sijasta osoittamiseen käytetään nyt 16-bittistä pointeria. Esimerkke jä: LDA (\$FB,x) Lisää .x:n ar voon $\$$ FB ja osoittaa tuloksella 2-tavuista pointeria 0-sivulla sekä lataa akun pointerin osoittamasta muistipaikasta. Sulut ilmaiseva INDIRECT-osoitusmuodon käytön.

INDIRECT INDEXED: tämä on samantyyppinen, kuin edelli nenkin. Käskyä seuraa yksitavuinen osoite, joka kertoo 2-tavuise pointerin (osoittimen) paikan O-sivulla. Tämän POINTERIN ARVOON LISÄTÄÄN .y:n AR VO, jolloin saadaan varsinainen parametrin osoite. Jos pointerin LB + y > 255, kasvaa HB ykkösellä (pointerin itsensä arvo e muutu!). Tätä osoitusmuoto käytetään paljon esim. muistin siirtoon: LB:tä lasketaan indeksi
rekisteri .y:ssä ja HB:tä pointerin HB:ssä.
ABSOLUTE INDIRECT: Tätä osoitusmuotoa käyttää ainoastaan ehdoton hyppykäsky JMP (xxxx) (JuMP). Käskyn perässä seuraa 2-tavuinen osoite, joka ilmaisee muistipaikan, josta hypyn kohteena olevan tavun LB saa daan. HB saaḍaan LB:n jälkeisestä tavusta. Tällä osoitusmuodolla saadaan aikaan hyppyosoitteen muutokset ilman, että itse ohjelmaa muutetaan. Monet C-64:n käyttöjärjestelmän aliohjelmat käyttävät tällaisia epäsuoria hyp pyjä, jotta käyttäjä voisi halutes saan muuttaa esim. IO-rutiineja (ROM-muistissa olevia hyppy osoitteitahan ei voi muuttaa). Esimerki. JMP ($\$ 0334$) aiheutte merkki: JMP (\$0334) aiheuttaa moitettu paikoissa \$0334 ja \$0335.

ACCUMULATOR: Täma osoitusmuoto vastaa tavallaan IMPLIED-muotoa, sillä siihen e kuulu kảskyn lisäksi mitään parametreja. Käskyn toiminta suoritetaan aina rekisterissä .a. Esimerkkejä: ROL A siirtää akussa olevaa lukua vasemmalle; LSR A siirtää akussa olevaa lukua oikealle.
Lisää esimerkkejä osoitusmuodoista seuraa esimerkkiohjelmissa.
Ohjelmien rakenne

muistissa

Tarkastellaan esimerkiksi yksinkertaista konekieliohjelmaa, joka tulostaa ruutuun a-kirjaimen. Ohjelman listaus on esim. seuraava:

osoite	sisaitoo	tointinta
Sc000	\$a9	lda \#1-kåsky
Scooll	\$41	\$41 (a:n koodi)
Sc002	\$20	jst (aliohiolimakutsu)
Sc003	Sd2	Sci2 (fow byte aliohielman alkuosoitteesta)
Sc004	Sff	Sff (figh byte atiohielman alkwosoitteesta)
Sc005	\$60	its (patum BASICin alaismuteen)

Kuten huomataan, jokaista konekielen käskyä vastaa yksi luku. Lisäksi käskyn vaatimat tiedot, parametrit, vievät $1 . . .2$ tavua tilaa. Yleensä konekieliohjelmaa kirjoitettaessa käytetään kolmikirjaimisia lyhenteitä (mnemonics), esim. LDA ja RTS, koska ne ovat ihmiselle huomattavasti mmärrettävămpiä kuin esim ymmärrettävämpiä kuin esim heksadesimaaliluvut. Kun konekieliohjelma kirjoitetaan käyttäen näitä lyhenteitä, puhutaan ASSEMBLER-ohjelmasta
Koko konekieliohjelma voi olla yhtä käskyjonoa, mutta sen seassa voi myös olla esim. tekstejä, taulukoita jne. Ohjelmaa tehtäessä on kuitenkin huomattava, ettei ohjelman suoritus saa siirtyä taulukoiden tai tekstien kohdalle, sillä mikroprosessori tulkitsisi nekin käskyiksi ja suorittaisi näin epämääräisiä käskyjä (mahdollisesti koko ohjelma tuhoutuisi). Mikroprosessori siis olettaa kaikki '’lukemansa" tavut ohjelmaksi (ei tietenkään niitä, joita se siirtää käskyjen ohjaamana esim akkuun)

Tarkasteltuamme 6502:n käs kytaulukkoa tutkimme muutamia yksinkertaisia ohjelmia, joista ohjelman rakenne, osoitusmuodot yms. seikat käyvät paremmi ilmi.
Seuraavassa käskyjen toiminnat lyhyesti. Ensiksi käskyn nimi, sen englannin- ja suomenkieliset selitykset, toiminta sekä vaikutukset Status-rekisterin lippuihin.

6502 Käskyt

1. ADC Add Memory to Accumulator with Carry Lisää parametri akkuun muistinumeron (Carry) kanssa. Parametrin arvo ei muutu.
Lisää akun arvoon parametrin arvon ja ykkösen, jos $\mathrm{C}=1$ ennen käskyn suoritusta. Jos tulos > 255, C=1. A, $\mathbf{C}=\mathbf{A}+\mathrm{M}+\mathrm{C}$
Käsky voi muuttaa lippuja: C, N, Z, V
2. AND And Accumulator with Memory

Suorittaa AND-operaation akun ja parametrin välillä, ts. akun kaikki ne bitit, jotka olivat ykkösiä SEKÄ AKUSSA ETTÄ PARAMETRISSA tulevat ykkösiksi akkuun. Parametrin arvo ei muutu.
$\mathrm{A}=\mathrm{A}$ and M
Käsky voi muuttaa lippuja: N, Z
3. ASL Shift Left One Bit (M or A)

Siirtää lukua muistissa tai akussa vasemmalle siten, että biti 7 siirtyy C:hen, bittiin 0 tulee 0 ja muut bitit siirtyvät yhden askeleen vasemmalle. Käytännössä tämä merkitsee luvun kertomista kahdella (vrt. 10 -järjestelmässä desimaalipilkun siirtäminen oikealle kertoo luvun 10:11ä).
C $-7-6-5-4-3 \leftarrow 2 \leftarrow 1 \leftarrow 0 \leftarrow " 0^{\prime \prime}$
Käsky voi muuttaa lippuja: N, Z, C
4. BCC Branch on $\mathrm{C}=0$

Suhteellinen hyppy, jos C-lippu on 0.
Käsky ei muụta Status-lippuja.
Branch on $\mathrm{C}=1$
Suhteellinen hyppy, jos Carry-lippu on 1.
Käsky ei muuta Status-lippuja.
Branch on $\mathrm{Z}=1$
Suhteellinen hyppy, jos Zero-lippu on 1, ts. jos edellisen operaation tulos oli nolla (esim. jos vertaillut luvut olivat yhtäsuuret).
Käsky ei muuta Status-lippuja.
7. BIT Test Bits in Memory with Accumulator

Muodostaa loogisen AND-operaation akun ja muistin välillä. Tulosta ei talleteta, ainoastaan Statuksen liput muuttuvat.
Muistipaikan bitti 6 siirretään V-lippuun ja bitti 7 N lippuun. Jos loogisen AND-operaation tulos oli 0, asetetaan Z-lippu.
Käsky voi muuttaa lippuja: N, Z, V

- Katan Ka

8. BMI

Branch on $\mathrm{N}=1$
Suhteellinen hyppy, jos Negative-lippu on 1. Käsky ei muuta Status-lippuja.
9. BNE
11. BRK

Branch on $\mathrm{Z}=0$
Suhteellinen hyppy, jos Zero-lippu on 0, ts. jos edellisen operaation tulos ei ollut nolla (esim. jos vertaillut luvut olivat erisuuret).
Käsky ei muuta Status-lippuja.
Suhteellinen hyppy, jos Negative-lippu on 0, eli jos edellisen operaation tulos oli positiivinen (tai nolla). Käsky ei muuta Status-lippuja.

.

Force Break
Forced Software Interrupt (Non-maskable) Ohjelman antama keskeytys, jonka seurauksena mm. ohjelman suoritus siirtyy keskeytysrutiiniin.
Tarkemmat kuvaukset keskeytysten yhteydessa. Käsky asettaa I-lipun ($\mathrm{I}=1$) ja siirtää $\mathrm{PC}+2$:n sekä statusrekisterin arvon $(B=1)$ pinomuistiin.
12. BVC Branch on $V=0$

Suhteellinen hyppy, jos Overflow-lippu on 0.
Käsky ei muuta Status-lippuja.
13. BVS

Branch on $V=1$
Suhteellinen hyppy, jos Overflow-lippu on 1.
Käsky ei muuta Status-lippuja.
14. CLC Clear Carry flag

Nollaa C-lipun ($\mathrm{C}=0$).
Ei vaikuta muihin lippuihin.
15. CLD Clear Decimal Mode

Kytkee desimaalimuodon pois toiminnasta ($\mathrm{D}=0$). Käsky ei vaikuta muihin lippuihin.
16. CLI Clear Interrupt Disable Bit Sallii keskeytyspyynnöt ($\mathrm{I}=0$). Keskeytykset selitetään myöhemmin.
Ei muuta muita Statuksen lippuja.
17. CLV

Clear Overflow Flag
Nollaa ylivuoto-lipun ($\mathrm{V}=0$)
Ei muuta muita Statuksen lippuja.
18. CMP Compare Accumulator and Memory

Vertailee akussa ja muistissa olevia lukuja toisiinsa
ja asettaa liput tulosta vastaaviksi: Jos luvut yhtäsuuret, $Z=1$ jne. Jos $A>=M, C=1$, muiten $\mathrm{C}=0$.
$\mathrm{A}=\mathrm{M}$?
Käsky voi muuttaa lippuja: C, N, Z
Compare .X and Memory
Sama kuin CMP, mutta indeksirekisterille .X. $\mathrm{X}=\mathrm{M}$?
Käsky voi muuttaa lippuja: C, N, Z
20. CPY

Compare .Y and Memory
Sama kuin CMP, mutta indeksirekisterille .Y. $\mathrm{Y}=\mathrm{M}$?
Käsky voi muuttaa lippuja: C, N, Z
21. DEC Decrement Memory by One

Pienentää muistipaikassa olevaa lukua yhdellä. Jos muistipaikassa oli 0 , sinne tulee 255 . Jos tulos on
$0, Z=1$ ja jos tulos negatiivinen (ylin bitti 1),
$\mathrm{N}=1$.
$\mathbf{M}=\mathbf{M}-1$
Käsky voi muuttaa lippuja: N, Z
22. DEX Decrement Index X by One

Sama kuin DEC, mutta pienentää rekisterin .X $\stackrel{a}{\mathrm{X}} \mathrm{X}=\mathrm{X}$.
$X=X-1$
Käsky voi muuttaa lippuja: N, Z
23. DEY

Sama kuin DEC, mutta pienentää rekisterin .Y arvoa.
$\mathrm{Y}=\mathrm{Y}-1$
Käsky voi muuttaa lippuja: N, Z
Exclusive Or Memory with Accumulato
Suorittaa Exclusive-OR-operaation akun ja parametrin välillä, ts. akun kaikki ne bitit, jotka olivat parametrissa ykkösiä vaihtavat tilaa, ts. '"0' muutwu "'l":ksi ja päinvastoin. Parametrin arvo ei muutu.
$\mathrm{A}=\mathrm{A}$ eor M
Käsky voi muuttaa lippuja: N, Z
Increment Memory by One
Suurentaa muistipaikassa olevaa lukua yhdellä. Jos muistipaikassa oli 255 , sinne tulee 0 . Jos tulos on $0, \mathrm{Z}=1$ ja jos tulos negatiivinen (ylin bitti 1),
$\mathrm{N}=1$.
$\mathbf{M}=\mathbf{M}+1$
Käsky voi muuttaa lippuja: N, Z
26. INX Increment ${ }^{\text {© }}$ 立dex X by One

Sama kuin INC, mutta suurentaa rekisterin .X arvoa.
$\mathbf{X}=\mathbf{X}+1$
Käsky voi muuttaa lippuja: N, Z
Increment Index Y by One
Sama kuin INC, mutta suurentaa rekisterin .Y arvoa.
$\mathrm{Y}=\mathrm{Y}+1$
Käsky voi muuttaa lippuja: N, Z
28. JMP

Ehp to New Locatio
Ehdoton hyppykäsky absoluuttiseen tai epäsuoraan muistipaikkaan
$\mathrm{PCL}=\mathrm{M}(\mathrm{PC}+1)$
$\mathrm{PCH}=\mathrm{M}(\mathrm{PC}+2)$
Ei muuta lippuja.
29. JSR Jump to New Location Saving Return Address Aliohjelman kutsukäsky (vastaa BASICin GOSUBkäskyä). Siirtää PC $+2:$ n pinomuistiin paluuta varten. Paluu tapahtuu, kun prosessori suorittaa RTS käskyn. Muuten sama kuin JMP.
S -PC+2
$\mathrm{PCL}=\mathrm{M}(\mathrm{PC}+1)$
$\mathrm{PCH}=\mathrm{M}(\mathrm{PC}+2)$
Ei muuta lippuja.
30. LDA Load Accumulator with Memory

Siirtää akkuun parametrin arvon. Parametrin arvoa ei muuteta.
A = M
Käsky voi muuttaa lippuja: N, Z
Load Index X with Memory
Siirtää X:ään parametrin arvon (ks. LDA).
$\mathbf{X}=\mathbf{M}$
Käsky voi muttaa lippuja: N, Z
Load Index Y with Memory
Siirtää Y:hyn parametrin arvon (ks. LDA) $\mathbf{Y}=\mathbf{M}$
Käsky voi muuttaa lippuja: N, Z
Shift Right One Bit (M or A)
Siirtää lukua muistissa tai akussa oikealle siten, että bitti 0 siirtyy C:hen, bittiin 7 tulee 0 ja muut bitit siirtyvät yhden askeleen oikealle. Käytännössä tämä merkitsee luvun jakamista kahdella (vrt. 10-järjestelmässä desimaalipilkun siirtäminen vasemmalle jakaa luvun 10:11ä). "Jakojäännös" menee C:hen. Kuten normaalistikin, tämä jakojäännös tarkoittaa puolikasta.
$\mathrm{C}-0-1-2-3-4-5-6-7-{ }^{\prime} 0$ '" Käsky voi muuttaa lippuja: N, Z, C
38. PLA

Pull Accumulator From Stack
Lataa akun pinomuistista (vastakkainen toiminto PHA:Ile).
A -Stack
Käsky voi muuttaa lippuja: N, Z
39. PLP Pull Processor Status from Stack

Lataa Status-rekisterin pinomuistista (vastakkainen toiminto PHP:lle
P -Stack
Voi muuttaa kaikkia lippuja.
Rotate One Bit Left (M or A)
Siirtää lukua muistissa tai akussa siten, että Clippu siirtyy bittiin 0 , bitti 7 C-lippuun ja muut bitit vasemmalle.
C $-7-6-5-4-3-2-1-0-C$
Käsky voi muuttaa lippuja: N, Z, C
41. ROR

Rotate One Bit Right (M or A)
Siirtää lukua muistissa tai akussa siten, että Clippu sirtyy bittiin 7, bitti 0 C -lippuun ja-muut bitit oikealle.
$\mathrm{C}-0 \leftarrow 1-2 \leftarrow 3-4 \leftarrow 5-6 \leftarrow 7 \leftarrow C$
Käsky voi muuttaa lippuja: $\mathrm{N}, \mathrm{Z}, \mathrm{C}$
Keskeytysrutiinista paluukäsky. Toiminta selostetaan tarkemmin keskeytysten yhteydessä.
Voi muuttaa kaikkia lippuja (lataa Status-rekisterin pinomuistista).
43. RTS Return from Subroutine

Aliohjelmasta paluukäsky (vastaa BASICin RETURN-käskyä). Lataa PC:n arvon pinomuistista.
PC $-S$
44. SBC

Subtract Memory from Accumulator with Borrow Vähennä parametrin arvo akusta "lainauksen" (Carry) kanssa. Parametrin arvo ei muutu. Vähentää akun arvosta parametrin ja ykkösen, jos C-lippu oli 0 . Jos C oli 1, vähentää akusta parametrin arvon. Tulos sijoitetaan molemmissa tapauksissa akkuun. Jos parametri oli suurempi kuin akun arvo, C-lippu nollautuu (vrt. lainaaminen vähennyslaskussa). Jos siis C oli ennen käskyn suoritusta 0 , vähennetään akusta tavallaan ykkönen "liikaa". Jos parametrin arvo oli pienempi kuin akun, C jää ykköseksi.
A, $\mathrm{C}=\mathrm{A}-\mathrm{M}-\mathrm{C}$
Käsky voi muuttaa lippuja: C, N, Z, V
45. SEC

Asettaa C-lipun. Käytetään esim. ennen vähennyslaskua (SBC).
$C=1$
Ei muuta muita lippuja.
Set Decimal Mode
Siirtää prosessorin laskutoimitukset tapahtuviksi desimaali (kymmen)-järjestelmässä. Tämän käskyn jälkeiset yhteen- ja vähennyslaskut suoritetaan siten, että akussa olevan luvun ajatellaan muodostuvan kahdesta kymmenjärjestelmän luvusta, ts. akun arvo voi olla 0...99. Kun alempi numero esim. yhteenlaskun tuloksena tulisi \$a:ksi, kasvatetaan ylempää numeroa, jolloin luku säilyy desimaalisena. Ylemmän numeron 'ylivuoto" asettaa C-lipun.
D $=1$
Ei muuta muita lippuja.
Set Interrupt Disable Flag
Asettaa I-lipun ja estảa siten keskeytyspyynnöt.
Tätä selitetään tarkemmin keskeytysten yhteydessä I =1
Ei muuta muita lippuja.
48. STA Store Accumulator in Memory

Tallettaa akun arvon muistiin. Akun arvo ei muutu. Vastakkainen toiminto LDA:lle. M $-\mathbf{A}$
Ei muuta mitäăn lippua Status-rekisterissä.
49. STX Store Index X in Memory

Sama kuin STA, mutta indeksirekisterille .X. M - X
Ei muuta mitään lippua.
50. STY Store Index Y in Memory

Sama kuin STA, mutta indeksirekisterille .Y. M - Y
51. TAX \quad Ei muuta mitään lippua.

Kopioi akun arvon X:ään, akun arvo ei muutu, mutta $X: n$ entinen arvo tuhoutuu.
$\mathrm{X}=\mathrm{A}$
Voi muuttaa lippuja: N, Z
52. TAY Transfer Accumulator to Index Y

Kopioi akun arvon Y:hyn, akun arvo ei muutu, mutta $\mathrm{Y}: \mathrm{n}$ entinen arvo tuhoutuu
$\mathrm{Y}=\mathrm{A}$
Voi muuttaa lippuja: N, Z
53. TSX Transfer Stack Pointer to Index X Kopioi pinomuistin osoittimen arvon X:ään. $\mathrm{X}=\mathrm{SP}$
Käsky voi muuttaa lippuja: N, Z
54. TXA Transfer Index X to Accumulator

Kopioi $\mathrm{X}: n$ arvon akkuun, siis vastakkainen toiminto TAX:lle.
$\mathrm{A}=\mathrm{X}$
Voi muuttaa lippuja: N, Z
55. TXS Transfer Index X to Stack Pointer

Kopioi X:n arvon pinomuistin osoittimeen (vastakkaistoiminto TSX). SP =X
56. TYA

Transfer Index Y to Accumulator
Kopioi Y:n arvon akkuun (vrt. TXA). Vastakkaistoiminto TAY.
$\mathrm{A}=\mathrm{Y}$
Voi muuttaa lippuja: N, Z

Yleisohjeita käskyjen
 käytöstä

Loogiset funktiot:
AND muodostaa ns. JAtoiminnon: jos molemmat vastinbitit olivat ykkösiä, ko. bitti tuloksessa on ykkönen, muuten nolla. Esimerkiksi: \%10011010 AND $\% 10110101=\% 10010000$. OR muodostaa TAI-toiminnon; Jos toinen tai molemmat vastinbitit ovat ykkösiä, tuloksen vastaava bitti on 1. Esimerkki: $\% 10110001$ OR $\% 00101101=$ \% 10111101
EOR muodostaa exclusive-or-toiminnon: Operaattorin tilassa ' 1 '' olevat bitit vaihtavat toisen luvun vastaavien bittien tilan. Esimerk kejä: \%1001 EOR \%1111 = \%0110; \%11100000 EOR $\% 00001000=\% 11101000$; $\% 1111$ EOR $\% 1111=\$ \% 0000$; $\% 1111$ EOR $\% 0000=\% 1111$

Yhteen- ja vähennyslasku: Yhteenlasku 1-tavuisilla luvuilla tapahtuu seuraavasti:
CLA ; nollataan Carry-lippu LDA A ; ladataan ensimmäinen yhteenlaskettavista
ADC B ; lisätään se toiseen STA C ; talletetaan tulos muistipaikkaan C

Ohjelmapätkässä puolipilkulla erotetut huomautukset, BASICissa tätä vastaa REM-lause). Ohjel man ajon jälkeen C-lippu on ykkönen, jos summa > 255. Tätä voidaan käyttää myöhemmin eräänlaisena muistinumerona 2-tavuinen yhteenlasku suorite taan seuraavasti:

CLC	; nollataan C
LDA AL	; ladataan luvun A alempi tavu (LB)
ADC BL	; lisätään siihen luvun B alempi tavu
STA CL	; tallennetaan tuloksen LB
LDA AH	; ladataan luvun A ylempi tavu (HB)
ADC BH	; lisätään siihen luvun B ylempi tavu
STA CH	; tallennetaan tuloksen HB

Huomaa, ettei ennen ylempien tavujen yhteenlaskua nollata C:tä Näin huomioidaan automaattises ti alempien tavujen yhteenlaskus sa mahdollisesti syntyvä muisti numero. Ohjelman ajon jalkeen C-lippu sisältää tiedon mahdollisesta ylivuodosta ylempien tavu-
jen yhteenlaskussa. Tämä voitaisiin jälleen huomioida useampitavuisissa yhteenlaskuissa seuraavien tavujen laskemisen yhteydessä. Esimerkeissä A, B, C, AL, AH jne vastaavat muistipaikkoja. Tietysti voitaisiin käyttää myös em. käskyjen muita osoitusmuotoja, mikäli se olisi tarpeen. Osoitusmuodon vaihto ei vaikuta käskyn perustoimintaan, vain parametrin haku tai tallennus suoritaan eri tavalla
HUOM! Ennen kuin mikroprosessori voi suorittaa näitä ohjelmia, ne on käännettävä konekielelle (muutettava esim. heksadesimaaliluvuiksi, jotka esim. POKEtetaan muistiin). Tähän tutustumme seuraavassa Poke\& Peek:n numerossa.
Vähennyslaskussa toimitaan lähes samalla tavalla kuin yhteenlaskussakin: alemmat tavut lasketaan ensin. Yksitavuinen vähennyslasku suoritetaan seuraavasti:
le luvuille. Laskun jälkeen Clippu ilmoittaa, onko ylimpiä tavuja laskettaessa jouduttu lainaamaan. Jos $\mathrm{C}=0$, luku B oli suurempi kuin luku A .

Lukujen vertailu
Lukujen vertailua varten on olemassa CMP-, CPX- ja CPYkäskyt. Niiden toiminta on täysin identtinen, jokainen vain käsittelee eri rekisteriä. Seuraava ohjelma vertailee muistipaikkojen A ja B sisältämiä lukuja:

LDA A ; ladataan luku A:sta CMP B ; vertaillaan sitä paikassa B olevaan
TAI:
LDX A ; ladataan luku A:sta X-rekisteriin
CPX B ; vertaillaan B:ssä olevaan
Vertaillaan rekisterissä Y olevaa lukua LUKUUN $\$ 12$ (ei muistipaikan $\$ 12$ sisältöön):
CPY \#\$12 ; \# ilmaisee, että vertailtava luku on käskyn jäljessä; kyseessä ei siis ole muistipaikka $\$ 0012$!

Kaikkien eo. ohjelmien tulokset

Tilanne lippujen tilat ohjelman jälkeen
$\mathrm{A}=\mathrm{B} \quad \mathrm{C}=1, \mathrm{Z}=1$
$\mathrm{A}>\mathrm{B} \quad \mathrm{C}=1, \mathrm{Z}=0$
$\begin{array}{ll}\mathrm{A}<\mathrm{B} & \mathrm{C}=0, \mathrm{Z}=0\end{array}$
$. \mathrm{Y}=\$ 12 \quad \mathrm{C}=1, \mathrm{Z}=1$
$. \mathrm{Y}>\$ 12 \quad \mathrm{C}=1, \mathrm{Z}=0$
$. \mathrm{Y}<\$ 12 \quad \mathrm{C}=0, \mathrm{Z}=0$
Nyt ohjelma saadaan haarautumaan käyttämällä ehdollisia hyppykäskyjä (esim. BNE, BEQ, BCC jne).

2-tavuisten lukujen vertailu suoritetaan esim. seuraavasti:
LDA AL ; ladataan luvun A LB CMP BL ; verrataan sitä B:n LB:een
LDA AH ; luvun A HB
SBC BH ; vähennetään B:n HB
Nyt C- ja Z-liput ilmaisevat 2-tavuisten lukujen suuruusjärjestyksen samoin kuin edellä. Käyttämällä alempien tavujen vertailussa CMP-käskyä säästetään SEC-käsky, joka tarvittaisiin käytettäessä SBC:tä. Tietysti vertailu voitaisiin tehdä myös vähentämällä luvut normaalisti toisis-

SEC	; asetetaan C-lippu vähennyslaskua varten
LDA A	; ladataan luku, josta vähennetään
SBC B	; vähennetään luku, joka on muistipaikassa B
STA C	; talletetaan tulos paikkaan C

STA C \quad; talletetaan tulos paikkaan C

Ohjelman jälkeen C-lippu ilmaisee, oliko B > A. Jos niin oli, on jouduttu 'lainaamaan" C-lipusta ja sen arvo on siten muuttunut nollaksi. Tätä käytetään hyväksi esim. 2-tavuisten lukujen vähennyslaskussa:
taan ja tarkastelemalla tulosta samoin kuin nyt. Kolmas mahdollisuus olisi vertailla LB:t ja HB:t erikseen, mutta se on selvästi hankalampi menetelmä.
INY- ja INX-käskyt kasvattavat ko. indeksirekisterin arvoa

-

SEC ; asetetaan C-lippu
LDA AL ; ladataan luvun A LB
SBC BL ; vähennetään siitä luvun B LB
STA CL ; talletetaan tuloksen LB
LDA AH ; ladataan A:n HB
SBC BH ; vähennetään siitä B:n HB
STA CH ; talletetaan tuloksen HB

Jos alempien tavujen vähennys-
laskussa jouduttiin lainaamaan C-lipusta, tämä huomioidaan automaattisesti ylempien tavujen vähentämisessả vähentämảllả 'ylimăäräinen" ykkönen. Näin myơs văhennyslasku voidaan laajentaa suuremmille kuin 8-bittisil-
ykkösellä. Näiden käskyjen merkitys selviää hyvin myöhemmistä ohjelmaesimerkeistä. Vastaavasti DEX ja DEY pienentävät rekisterien arvoa yhdellă. Akulle ei vastaavia käskyjä ole, vaan on käytettävä esim. ADC- ja SBCkăskyjä. INC ja DEC kasvattavat ja pienentảvăt muistipaikan arvoa yhdellä.

JMP vastaa BASICin GOTOa, rivinumeron tilalla vain on muistiosoite. Epäsuora JMP lukee hypyn kohdeosoitteen käskyn
jăljessă ilmoitetusta ja sitả seuraavasta muistipaikasta.

Aliohjelmaa kutsutaan JSRkäskyllă, joka tallettaa paluuosoitteen pinomuistiin ja siirtyy sitten aliohjelmaan samoin kuin JMP-käsky. Aliohjelmasta palataan RTS-käskyllä, joka taas siirtăä paluuosoitteen pinomuistista PC:hen. On huomattava, että mikăli aliohjelma käyttäăa pinomuistia väliaikaisena sảilơnă parametreille, pinomuistin osoittimen SP on oltava samassa tilassa aliohjelmasta poistuttaessa, kuin se oli jelmasta poistuttaessa, kuin se ours
sinne tultaessa, koska RTS-käsky sinne tultaessa, koska RTS-käsky
lukee kaksi 'päälimmäistä" arlukee kaksi '"päällimmäistä"' ar-
voa pinomuistista paluuosoitteeksi. Jos siis pinomuistissa olikin ylimpänä jokin muu luku, ohjelma sekoaa, koska se saa väärän paluuosoitteen. Pinomuistia käytettäessä onkin oltava erittäin tarkkana siitä, ettả kaikki sinne pantu tieto myös otetaan sieltä pois.
LSR, ASL, ROL ja ROR ovat käskyjä, joilla voidaan esim. kertoa tai jakaa luku kahdella. Näitä käskyjä käyttäen on myös mahdollista muuntaan esim. sarjamuotoinen datasignaali rinnakkaismuotoiseksi ja päinvastoin, kaismuotoiseksi
kuten $C-64: s s a ̆ k i n ~ t e h d a ̈ a ̆ n . ~ K a ̈ s-~$ kuten C-64:ssảkin tehdäăn. Käs-
kyt tavallaan vierittävăt akun tai muistipaikan sisältỏả vasemmalle tai oikealle. Bitti, joka joutuisi "ulos", siirretảan C-lippuun ja "tyhjenevään" bittiin otetaan joko nolla tai C-lipun entinen arvo käskystă riippuen. Kaksitavuinen luku kerrotaan kahdelia esim. luku kerrot
seuraavasti:
ASL AL ; kerrotaan alempi tavu ROL AH ; kerrotaan ylempi tavu
Käytettäessä ensin käskyä ÀSL saadaan LSB:hen nolla, kuten kuuluukin. HB:tả kerrottaessa on käytettävã ROL:ia, jotta alemmasta tavusta mahdollisesti saatava muistinumero huomioitaisii ylemmän tavun kertolaskussa.
Muilla kuin kahden kerrannaisilla kertominen saadaan aikaan esim. käyttämällä lisäksi yhteenlaskua. On tietysti mahdollista tehdä myös kertolaskurutiini, joka kertoo luvut keskenảän bitti bitiltä. Myöhemmin tullaan esittämäăn tällainen ohjelma 8-bittisille luvuille.

PHA- ja PLA-käskyjä káyttảen voidaan akun arvo tallettaa tilapäisesti pinomuistiin. Kuten jo aiemmin kävi ilmi, on erittăin tảrkeăa ottaa pinomuistista pois yhtä monta lukua, kuin sinne on pantukin. Vastaavasti PHP ja pantukin. tallettavat ja lataavat StatusPLP tallettavat ja lataavat Status-
rekisterin arvon pinomuistista. rekisterin arvon pinomuistista.
TSX-käskyllä voidaan pinomuis-TSX-käskyllä voidaan pinomuis-
tin osoitin SP siirtää rekisteriin X ja siitả esim. muistipaikkaan. Kun sitten sopivassa paikassa esim. pääohjelmassa ladataan SP:n arvo jälleen muistipaikassa ja siirretään se SP:iin, voidaan ja siirretaan se SP:in, ohjelman "ssian.
vuoksi estää.

Ensi kerraksi olisi hyvä opetella muistamaan suunnilleen konekielen käskyt ja niiden summittaiset toiminnat. Seuraavassa osassa tutustumme useisiin ohjelmaesimerkkeihin ja opimme tekemään omia konekieliohjelmia.

\qquad

Edellisen kerran tehtảvien
vastaukset:

1. $49152=12 * 1613+0^{*} 16 \uparrow 2+0^{*} 16 \dagger 1+0 * 1610$
$=\$ C \quad 0 \quad 0 \quad 0$ $=\$ C 000$
2. $\% 10100101=\% 10100101=\$ \mathrm{~A} 5$ (esim. taulukko P\&P2:ssa) $=\$ A 5=10^{*} 1611+5^{*} 16 \dagger 0=160+5=165$
3. $\$ 23+\$ 44$
$\begin{array}{r}\$ 23 \\ +\quad \$ 44 \\ \hline \$ 67\end{array}$
$\$ 67=\% 01100111=\% 01100111$
Tark. $\$ 23=2^{*} 16 \dagger 1+3^{*} 16 \dagger 0=35$
$\$ 44=4^{*} 16 \dagger 1+4^{*} 161 \quad 0=68$
$\$ 23+\$ 44=\$ 67=6^{*} 1611+7^{*} 16 \uparrow \quad 0=103=35+68$
4. $\% 10010+\% 11111010$
$111 \quad 1 \quad$-muistinumerot
$\% \quad 10010$
$\begin{array}{r}+\% 11111010 \\ \hline 100001100\end{array}$
5. $\$ 23-\% 1011=2^{*} 16 \dagger 1+3^{*} 16!\quad 0-\% 1011$
$=32+3-\% 1011$
$=35-\left(1 * 2 \uparrow 3+0^{*} 2 \uparrow 2+1 * 2 \uparrow 1+1 * 2 \uparrow 0\right)$
$=35-(8+0+2+1)$
$=35-11=24$

-

PCME \＆P

Kuvaruudun jakaminen

Jukka Marin

Tälả ohjelmalla C－64：n kuvaruu－ tu voidaan jakaa kahteen osaan， joilla on erilaiset grafiikkatilat． Esim．ylăosa ruudusta voi olla hienografiikalla ja alaosa merkin－ määrittelyllä．Myös värit voivat olla erilaiset．
Tätả ohjelmaa käytettäessä ei käytetä lainkaan videopiirin muistipaikkoja 53265， 53270 ， 53272,53280 ja 53281 ，vaan ne korvataan paikoilla 680．．．690．Vi－ deopiirin em．jokaista muistipaik－ kaa vastaa kaksi uutta paikkaa， yksi ruudun ylä－，yksi alaosaa varten．Ohjelma estää IO－piirin 6526 keskeytyspyynnöt ja kytkee toimintaan videopiirin antamat keskeytykset．Videopiiri antaa ohjelmassa kaksi keskeytystä yhtä kuvaruudun virkistyskertaa koh－ ti：ensimmäisen käyttäjän mää－
räämässä kohdassa，toisen ruu－ dun yläosassa näkymättömissä． Molemmissa keskeytysrutiineissa kopioidaan tiedot paikoista 680．．． 689 videopiirin vastaaviin rekistereihin．
Ohjelmaa käytettäessả näppãi－ mistön luku ja reaaliaikakellon （TI ja TI\＄）inkrementointi suori－ tetaan 50 kertaa sekunnissa enti－ sen 60：n sijasta，koska kuva lue－ taan täkäläisessă TV－järjestel－ mässä ruutuun 50 kertaa sekun－ nissa．Tämän vuoksi mm．kurso－ rin ohjailu tuntuu hieman jähme ältä．Ellei pidä tästä jähmeydestä， voi tietysti palauttaa koneen normaalitilaan．
Ohjelmalistaus on normaali BASIC－ohjelma，joka pokettaa DATA－lauseissa heksadesimaali－ koodina olevan konekieliohjel－ man muistiin ns．neljän kilon tyh jään tilaan（\＄c000．．．\＄cfff）．Ohjel ma tarkistaa samalla tarkistus
summien avulla，että datat on kir joitettu oikein．Jos ohjelma löy－ tää virheen，se ilmoittaa rivinu－ meron，jolla virhe on．Huomaa että rivinumerot ilmaisevat myös osoitteen muistissa．

Kun BASIC－ohjelma on ajettu， konekieliohjelma käynnistetään käskyllä SYS49152．Tällöin ohjel－ ma vaihtaa kuvaruudun reunuk sen värin tummanharmaaksi， taustan vaaleansiniseksi ja tekstin tummanpunaiseksi．Jos SYS käsky annettiin ns．direct model－ la，tulostetaan myös alkutekstit Ohjelmasta poistutaan käskyllä SYS49552．Ohjelman ollessa toi minnassa BASICia voidaan käyt－ tää normaalisti．Muistikartta on seuraava：

Herra VICström seikkailee tietokonemaailmassa

vast．osoite videopiirissä

53281
53280
53280
53270
53272
R
53281
53280
53270
53272
53265

＂HELP＂

10 REM＊＊＊ENNEN DEMOJEN KOKEILUA＊＊ ${ }^{6}$ REM＊＊＊ON TIETYSTI AJETTA
40 REM＊＊＊IRQ CLK．HEX JA SITTEN＊＊＊ Se REM＊＊＊CLK DEMO
＇IRQ．DSC．HEX＇
$10 \operatorname{DEFFNA}(x)=F N B(X)-48+7 *(F N B(x) 357)$
$20 \operatorname{DEFFNB}(X)=$ ASC $(\operatorname{MID} \$(H \$, X))$
30 DEFFNC $(x)=F N A(2)+16 * F N A(1)$
30 DEFFNC $(x)=$ FNA $(2)+16$＊FNA $(1$
$40 \mathrm{~A}==\mathrm{CODQ} \mathrm{C}: \mathrm{H} \$=\mathrm{RIGHT}(\mathrm{A} \$, 2): \mathrm{A}=\mathrm{FNC}(0): \mathrm{H} \$$
LEFT\＆（A\＄， 2 ）： $\mathrm{A}=\mathrm{A}+256 *$ FNC（ 0 ）： $\mathrm{LN}=\hat{A}$
$50 \mathrm{~S}=\mathrm{Q}:$ FORT $=1$ TO 16
6 READH\＄：IFH\＄＞＂FF＂THEN1 10
$B=F N C(\theta):$ POKEA，$B: S=S+B: A=A+1: N E X T T:$ READH $\$$
IFRく〉STHENPRINT＂VIRHE RIVILLA＂LN：STOP
100 LN＝LN＋16： 607050
19 PRINT＂DATAT OIKEIN＂：END
49152 DATA $78, A 9,01,80,0 D, D C, 80,1 A, 00,20,75, C 1, A 9,0 E, 80,21,06 C A$ 49168 DATAD0，A9， $01,80,20, D 0, A 9,02,80,86,02, A 2,04, A 0,00, B D, 06 C 4$ 49184 DATA2C， $\mathrm{C} 1,85, \mathrm{FB}, \mathrm{BD}, 31, \mathrm{C1}, 85, \mathrm{FC}, \mathrm{B1,FB}, 9 \mathrm{AD}, \mathrm{AB}, \mathrm{BL}, 9 \mathrm{AD}, \mathrm{AD}, 09 \mathrm{DA}$ 49216 DATAQ2， $58,20, A 3, C 0,60,4 \mathrm{E}, \mathrm{B3}, 02,4 \mathrm{E}, \mathrm{B3}, 02,4 \mathrm{E}, \mathrm{B}, ~ 日 2,60,05 \mathrm{~A}$

 49264 DATAB1， $02, A 2,09,20,00, C 1, A 9,04,80,12, D 0,4 C, 31, E A, A D, 067 C$
 49296 DATABD， $12,00, A D, B 2,02, F Q, 05, A 2,04,20,00, C 1,4 C, 81, E A, 0710$ 49312 DATA $20,46, C 0,24,90,30,01, E 9, A 2, F F, 58, E D, B 6, C 0,49,40,0, E D$

 49392 DaTA $14,60,71,79,78,76,50,02,19,60,14,0 \mathrm{~F}, 00,09,60,00,03 \mathrm{CD}$

 49456 DATA11， $00,00,00, D 0,00,78,48,8 A, 49,98,48, A 9,7 \mathrm{~F}, 8 \mathrm{DC}, 0 \mathrm{D}, 0855$ 49472 DATADO，AC， $20,00,30,08,20, B C, F B, 20, E 1, F F, F 0,03,4 C, 72,082 E$ 49483 DATAFE， $20,75, \mathrm{C} 1,20, \mathrm{AB}, \mathrm{FD}, 20,18, \mathrm{E5}, 68, \mathrm{AB}, 68, \mathrm{AA}, 68,20,07 \mathrm{DB}$ 49594 DATACC，FF，A9，00，85，13，20， $\mathrm{PA}, \mathrm{AB}, 20,00, \mathrm{CD}, 58, \mathrm{AS}, 02,8 \mathrm{~A}, 06 \mathrm{BC}$ 49520 DATAEE， $12, ~ B C, 02, A Q, A 2,5 E, A Q, C 0,8 E, 14,03,8 C, 15,03, A 2,05 E 1$ 43536 DATA $36, \mathrm{AQ}, \mathrm{C1}, 8 \mathrm{E}, 18,03,8 \mathrm{C}, 15,03,8 \mathrm{E}, 16,03,8 \mathrm{C}, 17,83,60,0495$

 49500 DATADC，AS ， $81,8 \mathrm{BD}, 8 \mathrm{DC}, \mathrm{A9}, 00,8 \mathrm{C}, 1 \mathrm{~A}$ ，

REACY．
$00,58,60,20,58,00,08 C C, 4$

＂DSC DEMO＂

10 $\mathrm{R}=690: \mathrm{SY} 549152: \mathrm{BD}=690$
20 POKER ，5：POKER＋1，14：POKER＋5，8：POKER＋6，
30 FORT＝50TO250：POKEBD，T：NEXT
40 POKER，14：POKER +1 5：POKER +5 ，10：POKER +6 ， 8
50 FORT＝25QTOSESTEP－1．2：POKEBD，T：NEXT
S0 GOTOE
READY．

Videopiirin muistipaikat selviävät esim．Programmer＇s Reference Guide：sta tai myöhemmin julkais tavasta videopiirin yksityiskohtai－ sesta esittelystä，jonka yhteydessä selostetaan mm．tämän ohjelman toiminta ja esitetään sen Assem－ bler－kielinen listaus．Lyhyesti toi－ minnat ovat seuraavat：

53265
－Bitti 7 rasterivertailu，tässä oh jelmassa ei vaikutusta
－Bitti 6 kytkee toimintaan ns． extended color moden；
$1=$ on， $0=$ off
－Bitti 5 kytkee näytön hieno－ graafiikkamuotoon；
$1=$ on， $0=$ off
－Bitti 4 ＂sammuttaa＂kuvaruu un reunuksen väriseksi ＝sytytys， $0=$ sammutu Bitti 3 valitsee rivien lukumăa rän； $0=24,1=25$ riviä
－Bitit $0 \ldots 2$ määräävät pehmeän vierityksen paikan Y－suun－ nassa
53270
— Bitit 6 ja 7 käyttämättả
－Bitti 4 määrää ns．moniväritoi－ minnon； $1=\mathrm{on}, 0=\mathrm{off}$
－Bitti 3 määrää sarakkeiden lukumäärän näytössä； $1=40$ saraketta， $0=38$ saraketta
－Bitit 0．．． 2 määräävät pehmeän vierityksen paikan X－suun－ nassa

53272
— Bitit 4... 7 määräävät kuvaruudun alkuosoitteen kilotavuina (Huom! Jos ruutu yritetään asettaa 4, 5, 6 tai 7 kilotavuun, sen tiedot luetaan merkkimuistista!)

- Bitit 1 ... 3 määräävät osoitteen, josta alkaen merkkien data luetaan (käytetään esim. merkkien määrittelyssä) kahden kilotavun portain
(Huom! Jos käytetään osoitteita 4 tai 6 kiloa, merkit luetaan ROM-muistista!) 53280
Määrää kuvaruudun reunuksen värin, 0 ... 15 (4 alinta bittiä, muut käyttämättä)
53281
Määrää kuvaruudun värin (4 alin ta bittiä, muut käyttämättä)
Lisäksi ohjelmaan kuuluu muistipaikka 690 , jonka avulla määrätään, mistä kohti ruutu jaetaan kahtia: Jos arvo on nolla, koko ruudun alalla ovat voimassa ruu tu \# 2 : n asetukset. Raja voidaan säätää välillä 51...255; mitä isompi arvo, sitä enemmän on näky vissä ruutua \#\# 1 (ylempi ruutu) Arvot $1 . . .50$ vastaavat arvoa 51.

On huomattava, ettei videopiirin em. muistipaikkoja voida käyttää BASICista käsin ohjelman ollessa toiminnassa. Kaikk asetukset on siis tehtävä muistialueelle 680... 690 .

Kuvaruudun
pimennyksen kanssa saattaa esiintyä ongelmia, koska videopiiri tarkistaa ruudun tilan vain aloittaessaan tiedon siirron ruudun yläosaan. Ts. jos ruutu käsketään sammuksiin puolivälissä, se ei sammu, koska videopiiri tarkistaa sammutus/sytytystilan vain aivan ruuduṇ yläosassa.

Kello

Tämä ohjelma tuottaa C -64:sen kuvaruutuun kelloajan kymmenesosasekunnin erotuskyvyllä. Ohjelma varaa ylimmän rivin käyttöönsä ja näyttää kelloaikaa riippumatta siitä, mitä BASIC-ohjelma tekee. Kello perustuu 6526-10-piirin ominaisuuksiin. 6526 nimittäin sisältää ns. TOD (Time Of Day)-kellon joka laskee aikaa riippumatta joka laskee aikaa rippumatta
keskeytyksistä yms. seikoista, liekeskeytyksistä yms. seikoista, lie-
nee tuttua, että BASICin TI\$ jätättää levy- tai kasettiasemaa käy tettäessä. Tämä johtuu siitä, että mikroprosessori kasvattaa TI\$:n aikaa ohjelmallisesti ns. keskeytyksistä, joita 6526 antaa 60 kertaa sekunnissa. Keskeytyksiä kuvataan tarkemmin myöhemmin konekielikurssin yhteydessä.

Ohjelma siirtää kelloajan ruutuun keskeytyksissä, joten levy tai kasettiasemaa käytettäessà näyttö saattaa pysähtyä. Kello kuitenkin käy ja näyttö palautuu normaaliksi heti, kun keskeytyspyynnöt jälleen hyväksytään. Kelloaika perustuu verkkovirran 50 Hz:n taajuuteen, joka on suhteel lisen vakaa. Vaikka taajuus lyhyellä aikavälillä voikin olla melko epätarkka, kello pysyy kuitenkin kuukausia minuutin tarkkuudella ajassa. Koska kello toimi BASICista riippumatta, sitä voi käyttää myös omissa BASIC-oh jelmissa. Ohjelma olettaa, ettà
kuvaruutu on normaalissa paikassaan muistissa (alkaen $\$ 0400$ eli 1024). Ohjelma itse sijaitsee ns. 4 kilon tyhjässä tilassa (\$c000... \$c180).
Ohjelma kirjoitetaan esim. oheisessa muodossa. BASICohjelma ajetaan, jolloin se POKEttaa konekieliohjelman muis KEttaa konekieliohjelman muistiin. Kelloaika saadaan ruutuun käskyllä SYS49152. Tällöin kello käynnistyy ajasta 00:00:00:0 Ajan asetus onnistuu käskyllä SYS49206,A\$. A\$:n täytyy sisältää 6-numeroinen luku. Muuten tulostetaan virheilmoitus: jos LEN(AS) $<>6$, tulostetaan IL LEGAL QUANTITY jos AS Lsältä: muita merkk jü kuin isältää muita merkkeja kuin numeroita, tulostetaan TYPE MIS MATCH. On huomattava, etta ajan ''laillisuutta" ei testata. Kel loajan on oltava muotoa 'HHMMSS' (kymmenesosasekunnit nollautuvat, kun aika asetetaan). Esim. kelloaika 15:24:10 asetetan SYS49206 "'152410" asetetaan SYS49206,' 152410 " AS = " 152410 "':SYS49206,A\$. Kellon saa pois ruudusta paina malla RUN/STOP + RESTORE Myöhemmin konekielikurssin yhteydessä tästä ohjelmasta julkaistaan versio, jossa on myös herätys. Silloin julkaistaan myös Assembler-listaus ja tarkka toimintaselostus, jonka avulla ohjelman muokkaaminen omia tarpeita vastaavaksi onnistuu

"IRQ CLK.HEX'

10 DEFFNA $(X)=$ FNB $(X)-48+7 *(F N B(X)>57$,
$20 \operatorname{DEFFNB}(x)=\operatorname{ASC}(\operatorname{MID}(\mathrm{E}(\mathrm{H}=, x))$

$50 \mathrm{~S}=0$: FORT $=1 \mathrm{TO} 16$

 90 IFR S^{2} STHENPRINTVIRHE RIVILLA"LN:STOP
19e LN=LN+1E:GOTOSO
!19 PRINT"DATAT OIKE IN": END
79152 DATA $78, A E, A 9, A Q, C 0,8 E, 14,03,8 C, 15,03,58, A 9,7 F, 20,0 F, 0628$
 49184 DATAS, $88, \mathrm{OC}, \mathrm{CA}, 10, \mathrm{FA}, \mathrm{AD}, 3 \mathrm{~A}, \mathrm{AB}, \mathrm{C} 1,8 \mathrm{E}, 26,03,3 \mathrm{C}, 27,03,06 \mathrm{FF}$ 49200 DATAG日, AL, $16,4 \mathrm{C}, 37, A 4,20, \mathrm{FD}, \mathrm{AE}, 20,9 \mathrm{SE}, \mathrm{AD}, \mathrm{AE}, 64, \mathrm{A4}, 65,0788$
 49232 DATAA $4, \mathrm{CB}, \mathrm{B} 1, \mathrm{FB}, 85, \mathrm{FD}, \mathrm{CB}, \mathrm{B} 1, \mathrm{FB}, 85, \mathrm{FE}, \mathrm{AO}, 05, \mathrm{~B}, \mathrm{FD}, \mathrm{CS}, 0 \mathrm{BAD}$ 49243 DATA $30,00, C E, C 9,3 A, B 0, C A, 88,10, F 3, A 9,7 \mathrm{~F}, 2 \mathrm{CD}, \mathrm{OF}, \mathrm{DC}, 8 \mathrm{C}, 0863$ 49264 DATAEF, $\mathrm{DC}, 20, A 3, B 6, A 0,00,20,9 C, C 0, C 9,12,90,07, F 8,38,0722$ 49280 DPTAES, $12,08,09,80,50,0 \mathrm{~B}, \mathrm{DC}, \mathrm{CB}, 20,9 \mathrm{C}, \mathrm{CO}, 8 \mathrm{BD}, \mathrm{DA}, \mathrm{DC}, \mathrm{CB}, 084 \mathrm{~F}$
 49312 ПATAQA, $2 A, C S, 18,71, F D, E 9,2 F, 60, A 9, B A, 8 D, 22,04,80,1 F, 069 C$
 49360 DATA $1 \mathrm{C}, 90,90,04, \mathrm{CA}, 10, \mathrm{FA}, \mathrm{AD}, \mathrm{QB}, \mathrm{DC}, 29,7 \mathrm{~F}, \mathrm{CS}, 12, \mathrm{DO}, 02,067 \mathrm{~A}$ 493TE DPTAAQ, ©e, 13, 2C, 9B, DC, 10, 03, FB, 69, 12, 08, AA, 20, 2A, C1, 05E? 49292 DATA80, $1 \mathrm{E}, 04,8 \mathrm{~A}, 29,70, \mathrm{AA}, 20,30, \mathrm{C1}, 8 \mathrm{D}, 10,04, \mathrm{AE}, 09,0 \mathrm{C}, 05 \mathrm{CE}$
 49424 DATARA, C1, 80, 21, $4,20,30, \mathrm{C}, 8 \mathrm{~B}, 20,04, \mathrm{AE}, 08, \mathrm{OC}, 20,2 \mathrm{C}, 053 \mathrm{C}$ 49456 DATA $8 \mathrm{~A}, 29$, $\mathrm{FQ}, 4 \mathrm{~A}, 4 \mathrm{~A}, 4 \mathrm{~A}, 4 \mathrm{~A}, 9 \mathrm{~S}, \mathrm{BQ}, 60,4 \mathrm{AB}, \mathrm{AS}, 9 \mathrm{~A}, \mathrm{CS}, 03, \mathrm{FQ}, 072$
 $404 E 8$ DeTA $25,01, A 5, D 2,69,00,85,02,68,4 C, C A, F 1, A 5, D 6,00,0 F, 0956$ 49504 DATAEE, $06, A 5,01,18,69,28,85,01, A 5,02,69,00,85,02,60,08 C 8$ 49520 DATAAA,AS, ©Q,AQ, Q1, $20, B A, F F, 50, B D, 00$,

EADY.

'CLK DEMO'"

10 PE:M *** KELIO-DEMD ***
20
30
30
EYS49 152

50 INPUTA $\$$: IFLEN (A $\$$) () CT THEMRUN
Ea sソ543206, At
78 END
20 REM
$\begin{array}{ll}90 & \text { REM } \\ 90 & \text { REM ENIEN TAMAN OHTELMAN } \\ \text { **** }\end{array}$
109 REM *** KELLON LATALSOH.ELMA ${ }^{* * *}$
110
READY.
Kaikki ohjelmat voit ladata itsel-
lesi Vaasan BBS:sta, puh. (961) 116223.

BUSINESS-
 Kirjanpito

- kehittyneet raportit
- ylläpitotoiminnot
- menojen seuranta
- tase-, tulos- ja LVV-laskelmat
- tilien tarkistusajot
4.500,-
(+ kustannuslaskenta 1990,-)

Suomenkielisen BUSINESS-ohjelmiston käyttäjää ei jätetä pulaan. Ohjelmat ovat helppokäythöisiä ja käyttöohjeet selkeitä. Ja tulevat BUSINESS-palvelumme käsittävät mm. korkealuokkaisia koulutustilaisuuksia sekä jatkuvia ylläpitopalveluja. Kasvavaa tehokkuutta yrityksellesi!

ROMPREDER

Kesällä tietokoneleirille

Viime lehdessï 2/86 kerroimme kesän tietokoneleireistä, joita Oy PCIData Ab järjestää yhdessï Bitti-lehden ja Info-ketjun kanssa. Ellet vielä ole varannut pailkaa itsellesi, tee se välittömästi soittamalla ja palauttamalla oheinen ilmoittautumislomake.

SOITA puh. 957/13 222 tietokoneleirit ja varaa paikkasi ennen kortin tảyttảmistä!

Postita kortti osoitteella:	Oy PCI-Data Ab
	Tietokoneleirit
	Pl 148
	65100 VAASA

TIETOKONELEIRIN VARAUSLOMAKE
Henkilötiedot
Nimi:
Osoite

Puhelin Ikä

Allekirjoitus
(alle 18 -vuotiaalta huoltajan allekirjoitus)
KURSSIVIIKKO

TÄTÄ LEIRIÄ ET VOI JÄTTÄÄ VÄLIIN

Lähetä osoitteella:
Oy PCI-Data Ab,
Poke \& Peek!-lehden toimitus,
PL 148, 65101 VAASA

Merkitse rasti ruutuan
 Ostetaan
 Myydään
 Vaihdetaan \square

EI LIIKEILMOITUKSILLE. ILMOITUKSESSA SAA
OLLA ENINTÄÄN 20 SANAA. Kirjoita näin

1. Kirjoita koneella tai tekstaten yksi kirjain ruutuun.
2. Jätä tyhjä ruutu sanojen väliin.
3. Vastaus puh. numero ja/tai osoite myös ruudukkoon.

\square										1	1			

MAKSU 20 mk . Ä Ää lähetä rahaa kirjeessä. Maksu varmimmin postisiirtotilillemme TA 146529-1 ja maksukuitti
ilmoituksen mukana toimitukseemme.

Kaikki C64:n ohjelmat eivät toimi C128:ssa. Missä syy?
Commodore on testannut asiaa ja löytänyt mm. seuraavia syitä: 1. Muutamien valmistajien (mm. Activision) C64 kasettiohjelmat käyttävät latausrutiinia, joka tutkii onko sarjaliitäntään kytketty oheislaitteita. Jos jokin peli ei lataudu, testaa vielä kerran ottamalla oheislaite irti sarjaliitännästä.
2. Muistipaikan $\$ 01$ oletusarvo on \$37 C64:ssa ja \$77 C128:ssa. Muistipaikkaa käytetään muistin kartoitukseen (LOWRAM;HIRAM;CHAREN) sekä kasettiaseman toimintoihin. C64:ssa käytetään hyväksi bitit $0 . . .5$ ja C128:ssa bitit $0 . . .6$ muistipaikasta $\$ 01$. Jos pelien valmistajat eivät ole tätä huomioineet, tulee ongelmia. CAPS LOCK näp päin vaikuttaa C128:ssa siten, että näppäin pohjassa muistipaikan sisällöksi saadaan \$37.
3. C64:ssa on I/O-lohkossa vapaita paikkoja, joita muutamien ohjelmistotalojen ohjelmat käyttävät hyväkseen. Nä mä ohjelmat aiheuttavat on gelmia siirryttäessä C64:sta C128:aan, koska C128:ssa on enemmän 1/O-rekistereita On olemassa tapaus, jossa C64:n ohjelma aiheuttaa 40-merkin näytön pimenemisen.
4. SID-piiri on sijoitettu C64:ssa osoitteeseen \$D400 mutta se esiintyy myös '"phantom ku

Myydään

CBM-64:än apuohjelma tilan (tai kodin) maksuvalmiuden laskentaan. Ohjeet mukaàn. Kasetti 50 mk postikuluineen. Seppo Ikonen, ANTTOLA. Puh. 955-61 612

VICSPRINT 64 ohjeineen interfase, joka sopii vakiokirjoittimien käyttöön CBM64 kanssa. Hinta 450:-
Mikael Ilmari, 90-666 177
Interface PCI-10 Brother-kirj.koneisiin. Brother CE-60 kirjoituskone. Puh. 90-63 84 94/Roos.
vana" osoitteessa \$D500. Jos ohjelma käyttää osoitetta \$D500, ääni ei kuulu C128:ssa.
5. Muutamat C64:n levyohjelmat käyttävăt suojauksessa tietoa uralla 36, jonka 1541 voi lukea mutta jota 1570 ja 1571 eivăt voi lukea.
6. Jotkut levyohjelmat käyttävät suojaukseen ja/tai turbolataukseen ohjelmaa 1541:n muistissa. Jos tämä ohjelma kutsuu 1541:n ROM-rutiineja, ei ohjelma toimi 1570 ja 1571:ssä, joissa on erilainen ROM.
Edellä esitettyjä ongelmia esiintyy melko harvoissa C64:n ohjelmissa, yleensä vanhimmissa markkinoilla olevissa. Tänä päivänä ohjemistovalmistajat ovat tietoisia ym. asioista ja ottavat ne huomioon C64:n ohjelmia tehdessään. Seuraavissa ohjelmissa on kuitenkin havaittu latausvaikeuksia: Hypersport (Imagine), Elite (Firebird), Mr Do's (US gold), Assembler (Databecker), Hero (Activision), Zorro (Datasoft), Frankie Goes To Hollywood (Ocean), Bonxo Frantic Freddie (Audiogenic).

Mikäli et vielä ole saanut

łehteä postitse, täytä tämä kuponki.

Postinumero

Postitoimipaikka
Osoitteenmuutos
Uusi

Postinumero
Postitoimipaikka

Minulla on Commodore

Asiakasnumerosi saat tämän kehden nimietiketistä

Lahetili kuponld osolteeclla: Oy PCl-Data Ab
PL 148
PL 148
65101 VAASA

YRITYSOHJELMIA
 Commodore 64:lle

Asiakaskortisto
Hinnasto
Laskutusjärjestelmä
Reskontra
Kirjanpito
Y.M. sovellutuksia

128:Ile
Tekstinkäsittely
Kirjanpito
Laskułusjörjestelmä Y.M.

ATK-PALVELU
ATSO MÄKINEN
90-370 660 i. 90-721 613

POTRE\&FEERE

Commodore pienkoneiden -kaystäjälehti

Painos

80.000. Neljäs yuosikerta

Julkaisija Oy PCI-Data Ab
Päätoimittaja
Johan Hagström
Toimitussihteeri
Maarit Keski-Hannula
Toimitusneuvosto
Johan Hagström
Jukka Kuorikoski
Kati Lehmonen
Maarit Keski-Hannula
Taitto
Kimalainen Oy, Vaasa
Ladonta
Laakakuva Oy, Vaasa
Painopaikka
Vaasa Oy
Toimitus
PL 148
65101 VAASA 10
Puhelin 961-113 611
Telex 74145 comi sf Telefax (961) 110041
Imoitukset
Maarit Keski-Hannula
$2 \mathrm{mk} / \mathrm{pmm}$. Lisävärit:
$1 \mathrm{mk} / \mathrm{pmm} /$ lisäväri. Vaih
topörssi enint. 20 sanaa.
20,- tilille TA 187978-0 ja
tosite ilmoitustekstin muka-
na toimitukseen. Ei yrityk sille.
Ilmoitusmateriaali lehden seuraavaan numeroon on oltava toimituksella viim. 15.8.-86.

Tilaukset
Asiakaspalvelu
Ilmestyy
Kuusi kertaa vuodessa
Seuraava numero syys-
kuussa.
Aineiston oltava toimituk sella 15.8.-86 mennessä.
Ei-tilatuista jutuista emme vastaa.

