

OY PCI-Data Ab järjestää ensi kesänä yhdessä Mikrobitin ja INFOn kanssa sarjan tietokoneleirejä, jonne voivat osallistua sekä aloittavat että pidemmälle ehtineet mikroilijat.

Koulutus tapahtua uusilla Commodore 128 D mikroilla. Leirit järjestetään Lautsiassa, Lahden ja Tampereen puolivälissä. Tietokoneleirien ohjelmaan kuuluu opetuksen lisäksi paljon ulkoilua ja muuta yhteistä toimintaa.

Opi ja viihdy Lautsiassa
Tietokoneleirejä järjestetään tämän kesän jokaisena viikkona, maanantaista perjantaihin. Leiripaikka on Lautsiassa, luonnonkauniilla paikalla Lahden ja Tampereen puolivälissä. Majoitustiloina on kahden hengen huoneita (oma WC). Opetus tapahtuu asianmukaisissa luokkahuoneissa, joissa kullakin leiriläisellä on käytössään oma Commodore 128 D laitteisto. Opetuksen ulkopuolella ympäristö tarjoaa mahtavat mahdollisuudet ulkoiluun, uintiin, souturetkiin sekä muuhun vastaavaan vapaa-ajan viettoon. Odotettavissa onkin nuotioiltoja, tikanheitto- ja pingiskilpailuja jne. Mutta tärkeintähän on tietysti itse opiskelu, katsoppas eri viikkojen aihepiirejä nïn huomaat, että jokaiselle löytyy omansa: konekieltä, grafiikkaa ja ääntä, tietoliikennettä ja CP/M:ää, peliohjelmointia..

Varaa paikkasi ajoissa

Varaa paikkasi ensin puhelimitse numerosta 957/13 222 ja sen jäl-
tietokoneiden käytössä. Laittei den vapaaseen käyttöön on myö varattu riittävästi aikaa. Jokainen osallistuja saa omakseen kurssimateriaalikansion myöhempää kertausta varten. Jokaiselle kurssilaiselle annetaan kurssin päätteeksi myös todistus.

Peruskurssi

(4 eri viikkoa)
Peruskurssia suositellaan niille, joilla ei vielä ole omaa tietokonetta tai jotka ovat saaneet sen aivan äskettaìn. Peruskurssin jälkeen voit käydä jatkokurssin.
Peruskurssilla opit:

- oheislaitteiden merkityksen ja niiden käytön
- käyttämään Basic-ohjelmointikieltä tekstin, grafiikan ja äänen käsittelyyn
- valmisohjelmien käytön.

Jatkokurssit edellyttävät tietokoneen toiminnan ymmärtämistä ja jonkinasteista Basic-ohjelmointitaitoa tai peruskurssin suoritusta.

Peliohjelmointi

(2 eri viikkoa)
Peliohjelmointikurssilla kerrataan pelien teossa tarvittavat käskyt ja käydään läpi niitä keinoja ja ohjelmarakenteita, joilla saadaan aikaan peleissä tarvittavia grafiikka- ja ääniefektejä.

Kurssilla opit:

- ohjelmoimaan tarvittavat pelihahmot
- kuinka kuviot saadaan liikkumaan ruudulla
- rakentamaan taustakuvat eri menetelmillä
- scrollaamaan taustakuvaa vaaka- ja pystysuunnassa
- ohjaamaan äänigeneraattoria äänitehosteiden luomiseksi

Konekieli

Basicin jälkeen suurin haaste ohjelmoijalle on konekieli. Kurssilla opit vuorovaikutteisesti konekieliohjelmoinnin perusteet ja opit käyttämään laitteen ominaisuuksia hyväksi nopealla ja koneenläheisellä tavalla.
Kurssilla opit:

- konekielen käskyt ja osoitusmuodot
- ohjaamaan kuvaruutua ja
oheislaitteita konekielellä
— käyttämään hyväksesi koneen valmisrutiineja
- tuntemaan koneen muistikartan (ne POKET...)

Grafiikka ja ääni

(2 eri viikkoa)
Tietokoneen hienoimmat ominaisuudet liittyvät sen kykyyn käsitellä grafiikkaa ja ääntä. Kurssikoneena oleva Commodore 128

Lautsian loma- ja kurssikeskus sijaitsee Lautsian kylässä Lahti-Tampere-tien varrella, noin 10 kl lometriä Hauholta Tampereelle päin. Kṻssikeskus tarjoaa majoitustiloja useassa eri rakennuksessa noin 150 henkilölle. Yhtei siin tiloihin kuuluu luokkahuoneita, kokoussaleja, kuntosali, uima-allas, kolme rantasaunaa. Lisäksi käytössä on veneitä ja muita vapaa-ajan välineitä.
(C-64 yhteensopiva) on tässä suh teessa markkinoiden parhaita. Kurssilla opit:

- tietokonegrafiikan teon käskyt ja periaatteet
— synnyttämään kuvaruudulle animaatiota
- jäljittelemään eri soittimien ääniä tietokoneella
— ohjelmoimaan tehosteääniä

Tietoliikenne ja CP/M

Modeemien ja elektronisten postilaatikoiden luoma tietoliikenne harrastus on levinnyt Suomenkin mikroilijoiden keskuudessa kuin kulovalkea. Lähde nyt harrastuk seen mukaan ja perehdy samalla suurta suosiota saavuttaneeseen CP / M-käyttöjärjestelmään.
...jatkuu sivulla 3.

puolustusvoimien

kanssa

Puolustusvoimat kokeilee myös tietotekniikan hyväksikäyttöä Osana tästä on suoritettu kenttäkokeiluja Säkylässä yliluutnantti Ilpo Nurmen johdolla. Commo-dore-64 on ollut mukana sotaharjoituksissa missä mm yli 1000 miehen henkilörekisterin ylläpito on hoidettu sen avulla. Moni on epäillyt ettei tietokone menesty metsässä teltassa ja kovassa pak kasessa. Kokeilussa on todettu että kun teltta on lämmin ja agregaatti kehittää sähköä niin tieto koneet toimivat moitteettomasti.

Myös ruokalistoja on tietoko neella laadittu ja erilaisia materiaaliluetteloita ym. Kokeilulla on hankittu kokemuksia armeijan käyttöön tulevaisuutta varten. Puolustusvoimat tulevat käyttämään tietotekniikka hyväkseen yhä enenevässä määrin vaikkakin kehitys voisi olla nopeampaakin. Se taas on kiinni määrärahoista mitä ATK:n kehittäjät toivovat kin lisää.

Sadastuhannes päätös

Jo muinaiset tietokoneammattilaiset olivat ihmeissään nähdessään ensimmäisen VIC-20 kotimikron Suomen Tasavallassa vuonna 1981. Toiset nauroivat sen vaatimattomille ominaisuuksille, toiset taas ihmettelivät koneen hintaa: 'ajatella, tietokone alle kolme tonnia!'. Kukaan ei voinut arvata, että tämä pikku veitikka tulee kohtapuolin olemaan koko kansan pikkulemmikki.

Tänä päivänä VIC:in ominaisuudet saattavat kuulostaa vaatimattomilta, mutta se oli joka tapauksessa Number One, ensimmäinen lajissaan. VICiä on valmistettu yhteensä yli 3.000 .000 kappaletta ja Suomessakin sitä myytiin runsaat 20.000 kappaletta. Ensimmäiset yksilöt hintaan $2.790,-$! En voi koskaan unohtaa minkälaisen tunteen Superexpanciermoduuli toi tullessaan kaikkine musiikki- ja grafiikkakomentoineen.
Kaikesta kritiikistä huolimatta VIC jatkoi valloitusretkeään meidän kaikkien sydämiin ja siitä tuli aikansa halutuin tietokone. Tänä päivänäkin VICejä on ahkerassa käytössä ympäri maata.
Vuonna 1982 tuli Commodre 64 mullistavine ominaisuuksineen. Monet kutsuivat sitä virheellisesti VICin isoveljeksi. Sitä Kuusnelonen ei koskaan ollut, lähisukulainen kylläkin. Kuusnelonen sai nopeasti valtavan suosion ja saman suosion se omistaa vielä tänä päivänäkin.
Kuusnelosesta tuli käsite koko maailmassa ja sitä on valmistettu pitkästi yli 6.000 .000 kappaletta. Enemmän kuin meitä suomalaisia on yhteensä! Se sai nimekseen Tasavallan Tietokone, tätä arvonimeä se kantaa edelleen.
Tämä samainen Kuusnelonen käänsi Suomen mikrohistoriassa monta sivua. Maaliskuussa 1986 tehtiin Suomessa merkittävä päätös. Silloin ostettiin sadastuhannes Commodore! Hankittu laite oli luonnollisesti Commodore 64. Tänä päivänä voimme todeta, että Kuusnelonen on standardi, ainoa kotimikrostandardi.
Kohta tuli uusi Commodore 16 Suomeen. Tässä koneessa oli taas uusia ulottuvuuksia ja parannuksia Kuustoistanen ylitti nopeasti 3.000 kappaleen rajan
Vuonna 1985 tapahtui taas! Uusi Commodore 128 teki tuttavuutta suomalaisiin joulun alla. Saman kuoren alla oli nyt kolme tietokonetta: Commodore 64, Commodore 128 ja CP/M-tietokoneet. Suomen asiantuntijat valitsivat Satakakskasin Vuoden Tietokoneeksi -85 ehdottomalla ääntenenemmistöllä (Printti).

Eikä kukaan tiedä mitä seuraavaksi tulee, tulevaisuus näyttää. Laitteiden suorituskyky lisääntyy, fyysinen koko muuttuu, ohjelmia tulee lisää kuten myös käyttäjiä. Mutta meidän kaikkien on muistettava, et tä kaikki alkoi VICistä, joka loi käsitteen kotitietokone. Tarkemmin sanottu VIC ja kotitietokone olivat yhtä. Siitä kaikki alkoi!

Commodore 128 kuumailmapallojen SM kisojen pistelaskjiona

Kuopiossa järjestettiin 1-2 maaliskuuta kuumailmapallojen SMkisat, joihin osallistui 8 pallokuntaa.
Sää oli lähes ihanteellisin ja ainoastaan voimakas tuuli viivästytti hiukan starttia toisena kilpailupäivänä. Peter Lindholm Helsingistä voitti tiukan kisan ainoastaan 3 pisteen erolla toiseksi tulleeseen Jouni Ruotsalaiseen. Kolmanneksi tuli Lapuan poika Jyrki Jaatinen.
Pisteet lasketaan tässä erikoisessa ja näyttävässä kilpailussa monimutkaisella kaavalla, josta Commodore 128 suoriutui hetkessä. Kaava oli sovellettu Calcresult 128 taulukkolaskentaohjelresult 128 taulukkolaskentaohjel-
malle ja lisäksi käytimme apuna malle ja lisäksi käytimme apuna
Vizawrite 128 ohjelmaa tekstinkäsittelyyn tulosliuskoja muotoillessamme.

Jari Aalto

LOHIKÄÄRMEEN REVANSSI

SOUND STUDIO

Syntetisaattori ja kotiäänitysstudio

Sound Studio on Commodoren helppokäyttöisin ja havainnollisin musiikkiohjelma.
Ohjelma koostuu kahdesta osasta, äänen editoijasta ja sekventteristä. Kun jompi kumpi osista on ladattu, käyttäjä voi vaivatta siirtyä osasta toiseen. Kummalla aloitatkin, sinulla on 60 esiohjelmoitua ääntä käytössăsi heti ja toiset 60 tallennettuna levyllä.
Isoa punaista nuolta siirtämälla joko joystickillä tai kursorinäp-
päimillă valitaan haluttu editoin titoiminto. Mikä tahansa 60 äänestă voidaan kutsua muistista ja editoida sekä tallettaa takaisin muistiin. Koko "äänikirjasto" voidaan tallettaa levylle myöhempää editointia varten tai käytettàväksi sävellystyössă sellaisenaan.
Soittaessasi näet ruudulta suurimman osan musiikin "arvoista". Näyttöön saat myös toisen ruudun, josta käsin voit valita erilaisia suodattimia. Joka tapauksessa, tarkastusmahdollisuudet ovat varsin vaikuttavat, ja näe täsmälleen mitä tapahtuu.

Musiikkieditoijaa käytettäessà saat ruudulle valikon, jota ohjataan funktionäppäimillä. Ohjel massa ei ole rytmikonetta, mutta ruudun vasemmassa ylảkulmassa oleva metronomi auttaa pysymään tahdissa.
Nauhoittaessasi voit käyttảa moniraitajärjestelmän mahdollisuuksia. Toisin sanoen voit taustalla kuunnella toisia raitoja samanaikaisesti kun nauhoitat. Kol me raitaa on normaali valmius, mutta jos käytettävissäsi on MIDI-liitäntä voit käyttää kuuttakin raitaa.

SOUND EXPANDER MUSIIKKIA YLI RAJOJEN!

Nyt voit tehdä Commodore 64:stasi tai 128:stasi Yamahan suosittua CX5:tä vastaavan musiikkitietokoneen. Sound Ex-pander-moduuli mahdollistaa 8-äänisen soittamisen, joka hive lee hienostuneempaakin musiikkikorvaa.

Perusohjelma levyllä on soita mukana-tyyppinen. Soittaa voit käyttäen joko Maestro-koskettimistoa tai täysimittaista viiden
oktaavin uutta Commodore-koskettimistoa. Molempia saat Com-modore-myyjältäsi.

Soittaa voit normaali- tai yksisormisointuja. Lisäksi oktaavin siirto, moninuottisoitto (enintään 4 nuottia) ja sointimuisti kuuluvat asiaan. Koskettimiston voit jakaa kahtia mistä kohden tahansa ja määrätä haluamasi äänen sävyt eri osille.

Käytettävissäsi on 12 esiohjel moitua rytmiä ja lisäksi 12 erityy listä taustakompleksia, joita voit ketjuttaa mielesi mukaan.
Sound Expander on todella huokea tapa tutustua kotiurkujen tarjoamiin moniin musiikkielä myksiin oman kotitietokoneen avulla.

KESÄLLÄ
 TIETOKONELEIRILLE

jatkoa sivulta 1.
Kursilla opit:
käyttämään modeemia ja otta maan yhteyden elektroniseen postilaatikkoon
tietoliikenneohjelman raken teen ja sovittamiseen

- elektronisen postilaatikon toiminnan ja sysopin aseman ja tehtävät
CP/M:n peruskomennot ja niiden käyttö

Ohjelmointikielet

Basic on maailman yleisin ohjelmointikieli, se on helppo oppia ja sen vuoksi aloittavien suosiossa. Tietokoneen käskemiseen on kuitenkin monia muitakin kieliä, jotka soveltuvat eri tarkoituksiin paremmin. Tällä kurssilla saat selkeän kuvan eri kielten lähtökohdista
Kurssilla opit:

- mitä on rakenteellinen ohjel mointi
työskentelemään kääntävillä
ohjelmointikielillä
- eri kielten erot Basiciin
- Logo, Pascal, Fortran

SOITA puh. 957/13 222 tietokoneleirit ja varaa paikkasi ennen kortin täyttämistä!
Postita kortti osoitteella
Oy PCI-Data Ab
Tietokoneleirit
Pl 148
65100 VAASA

Tule mukaan tietokoneleireille, leirittäjinä
ALANSA YKKÖSET: Oy PCI-Data Ab

- Commodore, markkinaykkönen BITTI - tietokonelehtien ykkönen INFO - myyntiketjujen ykkönen

HINNAT
LEIRIMAKSU
9.5.1986 mennessä ilmoitta

950 mk Majoitus

725 mk

TÄTÄ LEIRIÄ ET VOI JÄTTÄÄ VÄLIIN

KOTIMAINEN LEVY
ASSI C 64 ASSEMBLER
KÄÄNTÄÄ LÄHDEOHJELMAN KONEKIELISEKSI MIKSI KONEKIELELLÄ?

- Ohielmat nopeampia - Aliohielmaksi Basic
- Poistaa Basicin puutteet

pääohje maan
 SUOMENKIELINEN HELPPOKÄYTTÖINEN OPAS

RUNSAASTI OHJELMAESIMERKKEJÄ JA KONEKIELEN ALKEET Testiajo monitorilla käsky kerrallaan.

VAIN TÄLLÄ KUPONGILLA!!!
OHJELMA+OHJEKIRJA 175 mk + postikulut
VAIN OHJEKIRJA $40 \mathrm{mk}+$ postikulut
NIMI
OSOITE
Postita kuponki osoitteella:

KAASUTINTIE 19, 00770 HELSINKI

Commodoren uusi levyasema äănetơntă nopeutta

Tutustu 1571-levyasemaan.
Commodore 128-käyttäjä huomaa heti, että tämä uusi levyasema on huomattavasti nopeampi ja sen tallennuskapasiteetti on suurempi kuin 1541-mallin.

Aiotko ostaa C-128:n tai uuden levyaseman? Mitä toimintoja uusi 1571-levyasema voisi tarjota?
Vastaus riippuu pääosin siitä, mitä tietokonetta käytät sen kanssa. Riippumatta siitä mitä Commodoren tietokonetta 1571:n kanssa käytät, huomaat varmasti heti levyaseman hiljaisen käyntiäänen. Lukupään paikantaminen ei vaadi aseman pysähtymistä. Apuun on tullut valokenno. Eron huomaat kopiointisuojattua ohjelmaa ladatessasi. Enää ei kuulu luku/kirjoituspään kolahtelua ohjelman siirtyessä sektorilta toiselle.

Levyaseman moottori käynnis tyy heti kun levy työnnetään asemaan tai poistetaan. (Tämä vaatii
hiukan totuttelua). Tämän tarkoituksena on keskittää levyn keskusreikä paremmin sitä pyörittävälle akselille. Paremmasta keskittymisestä johtuen keskusreiän kuluminen on huomattavasti vähäisempää ja levy kestää kauemmin . Toinen etu on luku/kirjoi-tus-toimintojen sujuminen luotettavammin. Kulunut keskusreikä aiheuttaa ongelmia levyjen kanssa.
Voit turvallisesti poistaa levyn jos vihreä valo ei pala, vaikka levyaseman moottori käy.
Commodore on vaihtanut myös merkkilamppujen värit Virta kytketty-valo (power light) on nyt punainen ja käynnissävalo (busy light) vihreä.
Eräs mukava muutos on myös DIP-kytkinten sijoittaminen 1571-levyaseman takaosaan. Voit helposti valita takaosaan levyaseman laitenumeron 8:sta 11:een.
Tämä on helpompi tapa muut aa laitenumeroa kuin ohjel aa lait Suin ohjel miston avulla. Sen määrityshän on voimassa vain niin kauan, kun levyasema on käynnissä. Mallissa

Taulukko 1.

Taulukko 1. Aikavertailuja eri kảytơissä kảyttăen C-64 ja 1541 sekä C-128 ja 1571.

Käsky	$1541 / \mathrm{C}-64$	$1571 / \mathrm{C}-128$	1541 -tilassa
Save	41 s	33 s	-
Load	37 s	$4,5 \mathrm{~s}$	$8,5 \mathrm{~s}$
Verify	37 s	$4,5 \mathrm{~s}$	$8,5 \mathrm{~s}$

1541 laitemäärityksen muutos edellytti toimintojen keskeyttämistä.

Muutamia parannuksia

Muilla malleilla kuin Commodore 128, nämä ovat ainoat erot. Jos käytät tai aiot ostaa C-128:n, tulet huomaamaan kuinka monta etua 1571 tarjoaa 1541:een verrattuna.
Merkittävin parannus on nopeus. Taulukosta 1 näet kuinka paljon aikaa eri toimintoihin menee kun käytetään 1541-levyasemaa C-64:n kanssa tai kun käytetään 1571-levyasemaa C-128:n kanssa C-128-toimintatilassa. (Yhdistelmä C-64/1571 pystyi melkein samaan kuin 1541). Vertauksessa käytettiin 54-jaksoinen Basic-ohjelma.

Viimeinen sarake on mielenkiintoinen. Tämä on C-64/1541 säästämän ohjelman lataus. Nämäkin ohjelmat lataavat paljon nopeammin C-128:11a (C-128-tilassa). Kun C-128 on C-64-tilassa, saat samanlaiset tulokset kuin jos käyttäisit 1541:tä. (Tämä on välttämätöntä, jotta C-64 pystyisi lataamaan kopiointisuojatunohjelmiston). Eräs toinen tärkeä parannus C-128-tilassa on se, että 1571 on kaksipuolinen Siksi suosittelemmekin , vain laadultaan hyvia kaksipuo-
lisia levyjä. lisia levyjä.
Kaksipuolisella levyllä on 1328 vapaata lohkoa (et kai vaaranna niin paljon tietoa vain säästääksesi viisi markkaa levyltä?)
Yksipuolinen ja kaksipuolinen ovat ehkä outoja käsitteitä. Todellisella kaksipuolisella asemalla (kuten 1571) on kaksi päätä, jotka mahdollistaa lukemisen/kirjoittamisen levyn molemmille puolille kääntämättä levyä. 1541 on yksipuolinen levyasema - se pystyy kirjoittamaan vain levyn toiselle puolelle.
Jos käytät toista puolta kääntämällä sitä sinun täytyy olla hyvin varovainen 1571-asemalla. Vaik-

Käsky	Basicillī	DOS WEDGE:llă
LOAD (Basic Programs) LOAD'PROG.NAME',	/PROG.NAME	

Huom. Ylläolevat komennot voidaan käyttää hakemiston kanssa listaamalla hakemisto ja kirjoittamalla oikean merkin ensimmäiseen sarakkeeseen (jaksonumeron yläpuolelle). Ei tarvitse poistaa yhtäkään lainausmerkkiä, jne. Paina vain rivinảppäintả kun olet kirjoittanut oikean merkin.

Huomaa: voit painaa vălinảppäintä pysäyttääksesi listauksen, paina uudelleen, niin se jatkuu taas (tai paina stop-näppäintä).

READ ERROR 10 OPEN15,8,
CHANNEL
20 INPUT $15, \mathrm{~A}, \mathrm{BSC}, \mathrm{D}$
9 (for drive 9$)$
30 PRINTA;B5;C;D
DEFAULT DRIVE FOR WEDGE
CHANGE DEFAULT DRIVE FOR WEDGE
Huomaa: Voit kảyttää DOS Wedge komentoa Basic-ohjelmassa kirjoittamalla 'a' ja ympäröidä komennon lainausmerkeillä. Esim. 10 a '10:"•REM INITIALIZE DRIVE
Taulukko 2. DOS Wedge-käskyt 64-tilassa.

ka se ei pysty lukemaan kääntö puolta, se tulee C-128-tilassa pohjustamaan minka tahansa levyn molemmat puolet. Näin ollen ha-

 luat ehkä jäljentää kääntöpuolentietoja kaksipuolisille 1571levyille. Voit sen jälkeen säästää alkuperäisen levyn varmistuksena. (1541-asemalla tai C-64:llä et pysty lukemaan 1571-levyn toista puolta).

Myynti:
Laitteiden jälleenmyyjät ja hyvinvarustetut kirjakaupat kautta maan.

AMERSOFT

KURSSISEURANTA JÄRJESTYKSEEN!

 PÖRSSIHAI 64 Tietokoneohjelma jokaiselle osakesäästäjälle Commodore 64, levyke Ovh 695--Pörssihai 64 on jokaiselle osakesäästäjälle tarpeellinen työkalu, jonka avulla arvopapereiden kurssikehityksen seuranta olennaisesti helpottuu. Ohjelman avulla luodaan levytiedosto, jonka avulla voidaan päivittää kurssinoteeraukset halutuin aikavälein. Myöskin osakeantilaskut on sisällytetty ohjelmaan. Ohjelman käyttö ei edellytä kirjoitinta, mutta se voidaan asentaa kaikkiin commodore-kirjoittimiin.

COMLISP
 interprenter

Ainutlaatuinen Lisp-tulkki Commodore 64:lle. Pakkaus sisältää suomenkieliset ohjeet ja LISPkurssin. Levyke, ovh. 495,-

1571-levyaseman
 käyttäjän opas

Commodore 1571 Disk Drive User's Guide-opas on selvästi parempi kuin 1541-aseman käsikirja. Se on hyvin johdonmukainen alusta loppuun. Sinulle kerrotaan miten (ja miksi) levy pohjustetaan heti kun levyasema on kytketty tietokoneeseen.

1571 testi/demo levy

Koska 1571 on yhteensopiva niin monien Commodore tietokonei den kanssa, joillakin levyn ohjelmilla on useat versiot. Ensimmäiset tiedostot (''How to use'') selittävät mitä levyn ohjelmat pystyvät tekemään.
Jotkut ohjelmat ovat erittäin hyödyllisiä toiset tekevät vain sen mitä yksi tai kaksi Basic-komentoa pystyykin. Tässä seuraa lyhyet selitykset demo-levyn ohjelmista.

DOS SHELL (C-128 ainoas taan) - Tämä on suuri ohjelma, johon sisältyy jo aliohjelmaa. Näistä monet näyttävät hieman yksinkertaisilta, kuten Aja oh jelma, Pohjusta levy, Puhdista le vy ja Nimeä uudelleen tiedostot nämä voidaan korvata yksinker taisilla Basic 7.0 tai DOS Wedge komennoilla. Muut ohjelmat (jäljennä levy, Jäljennä tiedostot, Poista tiedostot, Lataa tiedostot
a Järjestä uudelleen hakemisto) voivat olla hyvinkin hyödyllisiä. Käsikirja suosittelee aina lataamaan DOS SHELL. Lataa DOS SHELL työntämällä levy ievyasemaasi (aseman power kytkettynä) ja palauta/nollaa C-128 Näin ohjelma lataa itsensä.
C-64 WEDGE (C-64) - Tämä ohjelma lataa DOS Wedge (DOS 5.1) muistiin helppoja levykomentoja varten. Taulukosta 2 näet täydellisen listan Wedge-komennoista.

VIC-20 Wedge (VIC-20) - Tämä on alhaisempi asteikkoinen versio C-64 Wedge'stä (tulos ei-laajennetusta VIC'n 3.5 K RAM:sta).

SD.BACKUP. - (Yksinkertainen asemavarmistusohjelma, on versiota C-16, Plus/4 ja C-64-varten. Käytä DOS SHELL-ohjelmaa C-128 varten Peitä aina minkä tahansa kopi ointiohjelman alkulevyn kirjoituksenestolovi.
SD.COPY.C64 (C-64) - Jäl jennä tiedosto tai tiedostolista käyttämällä yksipuolista levyasemaa. Jos aiot jäljentää vain yhden tai kaksi tiedostoa, opettel nimet ennenkuin ajat tämän ohjelman. Laatiaksesi listan, sinun täytyy käydä läpi hakemisto ja hakea jokaisen tiedoston nimen, joka täsmää siihen nimeen korttimerkillä.

PRINT.
UTiL - Tassa C-16. Plus 4 on kolme versiota - 1 C-64 varten. Jos sinulla on muun valmistajan printteri, joka sopii Commodo reen, voit myös käyttää ohjelmaa. Kokeile printteriäsi varmuuden vuoksi.

DIR PRINT (kaikki) - Tällä ohjelmalla kirjoitetaan levyhakemistot.

DIR SQUEEZE (kaikki) Tämä ohjelma poistaa pyyhittyjä tiedostonnimiä levyhakemistosta ja täyttää sen jälkeen hakemiston tyhjät alueet. On myös mahdollisuus aakkostaa hakemisto.

DISK-DUMP (kaikki) - Jos haluat nähdä tiedoston jokaisen tavun, niin tämä ohjeima on sinua varten. Arvot näytetään heksadesimaaleina, mutta osoitteet desimaaleina

CHANGE UNIT (kaikki) Käytä tätä ohjeimaa, jos sinulla on toinen levyasema la haluat muuttaa laitenumeroa. Tämä e ole kovin hyödyllistä ellet vain tilapäisesti käytä toista levyasemaa. 1571-asema voidiaan muuttaa myös takapuolella olevalla DIP-kytkimellä: tämä on parempi tapa muuttaa yksikkö.
UNSCRATCH - Olet juuri poistanut tiedoston ja huomaat, että se oli ainoa jäljennös. Tämä ei ole ongelma, jos vain panet levyn sivulle ja lataat tämän ohjelman. Upota toinen levy takaisin sisään ja aja UNSCRATCH-ohjelma. Se toimii vain, jos tiedät minkälainen tiedosto poistettiin. Tämä ohjelma voi olla todellinen hengenpelastaja!
LOAD ADDRESS (kaikki) Tällä ohjelmalla voit muuttaa määrätyn ohjelman SYS-osoitteen. Osoite on kirjattava desimaalina.
FILE DEMO (kaikki) — Nämä ohjelmat esittelevät suhteellisten a peräkkäistiedostojen perusideat. Molemmat ohjeimat sisältävät REM-lauseet opastaakseen sinut. Muista säästää nämä ohjelmat levylle suojaamatta/peittämättä kirjoituksenestolovea; muuten tapahtuu levyvirhe.
SEQ LISTER (kaikki) - Voit käyttää tätä ohjelmaa lukemaan
sstinkäsittelyä tai mitä tahansa muuta peräkkäistiedostoa levyltä. Yksi ongelma on ehkä se, että ohjausmerkit on kirjoitettu myös kuvaruutuun. Tämä voi aiheuttaa värimuutoksia tai muita outoja muutoksia. Ohjelma yksinkertaiesti vedostaa tiedot kuvaruutuun lia jikä sana jatkuu , euraavalla rivila (sanankierratysominaisuutta ei ole). Tämä on kuitenkin helpompi kuin että joutuu lataamaan tekstinkäsittelylaitteen, jotta näkisi tiedoston tai kaksi.

DATAMAKER.
(C-64,
-16 ja Plus/4) - Jos sinulla on tarve muuntaa konekieliohjelman tieto lauseisiin lataa ensin konekieliohjelmasi ja aja sitten DATAMAKER-ohjelma tietokonettasi varten.

HEADER CHANGE (kaikki) - Ehkä sinulla on levy, jonka nimi mielestäsi voisi olla parempi. Tällä ohjelmalla pystyt antamaan levylle uuden nimen muuttamatta levylle uuden nimeñàn muuta levyllä.
64. AUTOSTART (C-64) Laadi uusi ohjelma, joka automaattisesti ajaa alkuperäisohjelman. Tämä on käytännöllistä ko-
nekieliohjelmia varten. Muunta malla alkuperäisen ML-ohjelman auto-start ohjelmaksi, et koskaan unohda alkuperäisen ML-ohjelman vaatimaa SYS osoitetta, kos ka se ajaa automaattisesti. (Tämă ohjelma ei ole samaa kuin AUTOBOOT MAKER C-128 varten, viimemainittu lataa itsensä, tämä ohjelma vaatii sen, että määrittelet ladattavan ohjelman).
PRINTER TEST (kaikki) Testaa Commodore-printterisi tällä ohjelmalla, jotta näet, että kaikki merkit on kirjoitettu oikein.

FORMAT DISK (kaikki) Jos olet aloittelija etkä tiedä miten levy pohjustetaan, niin tämä ohjelma auttaa sinua. (Lue käyttöoppaastasi, miten se pohkayttooppaastasi, miten se poh

AUTOBOOT MAKER (C-128) - Sinulla voi olla autoboot-oh jelma millä tahansa levyllä, jota käytät C-128-tietokoneella. Tämä ohjelma virittää autoboot-toiminnan määrittelemällesi ohjelmalle. Siinäpä se. Jos omistat C-128:n, uskon, että tulet arvos tamaan 1571-aseman ominai suuksia ja nopeutta.

COMMODORE 128
 MUISTIKARTAT: TARKEAT ASEMAT
 Nämä kartat soveltuvat koneeseen, kun konetta käytetään 128 K tilassa. 64 tilassa koneen kartta on samanlainen kuin Commodore 64:n kartta.
 Tämä väliaikainen lista näyttää osan tärkeimmistà kohdista.

All Banks:

 Hex Hex$0000-0001$ 000 F 0010 0015
$0016-001$ 0016-0017 002D-002E 002F-0030 0031-0032 0033-0034 0035-0036 0039-003A 0039-003A $003 \mathrm{~B}-003 \mathrm{C}$ 003D-003E 0041-0042 0043-0044 0047-0048 0049-004A 0063
0064-006 0068 006A-006F 007 e 0071
$007 \mathrm{D}-0$ 0090
0091
0098
0099
009 D
00A0-00A2 00AE-00A $00 \mathrm{~B}^{7}$
00B8
00B 9
$00 \mathrm{BB}-00 \mathrm{BC}$ $00 \mathrm{BB}-1$
00 C 0 $00 \mathrm{C}-00 \mathrm{CB}$ $00 \mathrm{CC}-00 \mathrm{CD}$ 00D0
00 DI
00D3
00D5
00D6
00D7
$00 \mathrm{E} 0-00 \mathrm{E}$ 00E2-00E3 00E4-00E7 00E8-00E9 00EB 00 EC OOFA-00F 00FA-00F 0100-01FF 0100-013E 0100-0124 0125-0138 0200-02A0 02A2-02AE 02AF-02BD 02BE-02CC 02CD-02 $02 \mathrm{CD}-02 \mathrm{E}$ 02E3-02FB 02FC-02F

0-1 1/0 port, similar to C64
Type: $\mathrm{FF}=$ string; $00=$ numeric
Type: $80=$ integer; $00=$ floating point
Current $1 / 0$ prompt flag
Integer value
Pointer: start-of-BASIC (for bank 0)
Pointer: start-of-variables (bank 1)
Pointer: start-of-arrays
Pointer: end-of-arrays
Pointer: string-storage (moving down)
Pointer: limit-of-memory (bank 1)
Current BASIC line number
Current BASIC line number
Textpointer: BASIC work point
Current DATA line number
Current DATA address
Current variable name
Current variable address
Accum ${ }^{\#} 1$: exponent
Accum ${ }^{\#} 1$: mantissa
Accum\# 1: sign
Accum\# 2: exponent, and so on
Sign comparison, Acc \# versus \#2
Accum \# 1 lo-order (rounding)
BASIC pseudo-stack pointer
Status word ST
Keyswitch 1A: STOP and RVS flags How many open files
Input device, normally 0
Output CMD device, normally 3
$1 / 0$ messages: $192=$ all. 64 errors, $0=$ nil Jiffy Ciock HML
Tape end adds/End of program
Number of characters in file name
Current logical file
Current secondary address
Current device
Pointer to file name
Tape motor interlock
RS-232 input/output buffer addresses
Keyboard decode pointer (bank 15)
Number of characters in keyboard buffer Number of programmed chars waiting
Key shift flag: $0=$ no shift
Last key code: 88 if no key
Input from screen/from keyboard
40/80 columns: $0=40$ columns
Character base: $0=$ ROM, $4=$ RAM
Pointer to screen line/cursor
Color line pointer
Screen margins: bottom, top, left, right
Input cursor \log (row, column)
Position of cursor on screen line
Row where cursor lives
UNUSED
Processor stack area
Tape error log
DOS work area
PRINTUSING work are
BASIC input buffer
Bank peek subroutine
Bank poke subroutine
Bank compare subroutine
JSR to another bank
JMP to another bank
JMP to another bank
Function execute hook
Function exec
BASIC links

0312-0313	786-787	Unused
0314-0315	788-789	IRQ vector
0316-0317	790-791	Break interrupt vector
0318-0319	792-793	NMI interrupt vector
031A-032D	794-813	Kernal vectors
032E-033D	814-829	Kernal links
033E-0349	830-841	Keyboard matrix shift vectors
034A-0353	842-851	Keyboard buffer
0354-035D	852-861	Tab stop bits
035E-0361	862-865	Line wrap bits
0362-036B	866-875	Logical file table
036C-0375	876-885	Device number table
0376-037F	886-895	Secondary address table
0380-039E	896-926	CHRGET subroutine
0386	902	CHRGOT entry
039F-03D1	927-938	Subroutines to fetch from RAM banks
03Df	991	Accum 1: Overflow
FF00	65280	MMU configuration register
FF01-FF04	65281-65284	MMU load config registers
Bank 0:		
0400-07E7	1024-2023	40-column screen memory
07F8-07FF	2040-2047	Sprite identity area (text)
0800-09FF	2048-2559	BASIC pseudo-stack
$0 \mathrm{~A} 00-0 \mathrm{~A} 01$	2560-2561	Vector: Basic restart
0A05-0A06	2565-2566	Bottom of memory pointer
0A07-0A08	2562-2563	Top of memory pointer
0A18	2584	RS-232 receive pointer
0A19	2585	RS-232 input pointer
0A1A	2586	RS-232 transmit pointer
0A1B	2587	RS-232 send pointer
0A20	2592	Keyboard buffer size
0 A 22	2594	Key repeat: $128=$ all. $64=$ none
$0 \mathrm{~B} 00-0 \mathrm{BBF}$	2816-3007	Cassette buffer
$0 \mathrm{CO} 0-0 \mathrm{DFF}$	3072-3583	RS-232 input, output buffers
0E00-0FFF	3584-4095	System sprites (56-63)
1000-10FF	4096-4351	Programmed key lengths and definitions
117A-117B	4474-4475	Float-fixed vector
117C-117D	4476-4477	Fixed float vector
11E9-11EA	4585-4586	Light pen values X and Y
1200-1201	4608-4609	Previous Basic line number
1202-1203	4610-4611	Pointer: Basic statement for CONT
1204-1207	4612-4615	PU character (,.S)
1208	4616	Eror type ER
1209-120A	4617-4618	Error line number EL
1210-1211	4624-4625	End of Basic (Bank 0)
1212-1213	4626-4627	Basic program limit (FF00)
1218-121A	4632-4634	USR program jump
121B-121F	4635-4639	RND seed value
2000-3FFF	8192-16383	3 Screen memory (hi-res)
4000-FBFF	16384-64511	BASIC RAM memory (hi-res)
Bank 1:		
0400-FBFF	1024-64511	Basic variables, arrays, strings
Bank 14: Same as Bank 15, below except:		
D000-DFFF	53248-57343	3 Character generator ROM
Bank 15:		
4000-CFFF	16384-53247	ROM: BASIC
D000-D030	53248-53296	40-col video chip 8564
D400-D41C	54272-54300	SID sound chip 6581
D500-D50A	54528-54538	8 MMU 8722 memory setup registers
D600-D601	54784-54785	80-column CRT contr 8563
D800-D8E7	55296-56295	5 Color nybbles
DC00-DC0F	56320-56336	6 CIA (IRQ) 6526
DD00-DD0F	56576-56591	1 CIA 2 (NM) 6526
DF00-DF0A	57088-57098	8 DMA controller
E000-FEFF	57344-65279	ROM: Kernal
FF05-FFFF	65285-65535	5 ROM: Transfer, Jump Table

KONEKIELI

Jukka Marin Ruskeisentie 24 70900 Toivala puh. (971) 451730

Lukumuunnokse

Tässä artikkelisarjassa tarkastelemme lähemmin Commodore 64:n konekieltä ja toimintaa Aloitamme kuitenkin tutkimalla binääri- ja heksadesimaalijärjes telmiä. Meille tutuimmassa lukujärjestelmässä, kymmenenjärjestelmässä, käytetään kymmentă numeromerkkiä. Binääri- eli kaksijärjestelmässä sensijaan käytetään vain kahta numeromerkkiä, ykköstä ja nollaa, joita kutsutaan biteiksi (Bit). Tämä järjestelmä on erittäin käyttökelpoinen tieto koneissa, koska ykkönen voidaan helposti esittää korkeana ja nolla matalana jännitetasona. Nykyaikaisissa tietokoneissa 5 V :n jännite vastaa siis tilaa " 1 " ja 0 V vastaa tilaa " 0 ". Koska nollan ja ykkösen välillä on näin suuri marginaali, virhetoiminnat ovat hyvin epätodennäkoísià. Jos ajatellaan, että ykköstä vastaisikin esim. 0.1 V , olisi virhemahdollisuus monin verroin suurempi
Heksadesimaalijärjestelmässä taas käytetään 16 numeromerkkiä. Nämä ovat $0,1,2,3,4,5,6$, 7, 8, 9, a, b, c, d, e ja f. Heksade-simaali- ja kymmenjärjestelmän kymmenen ensimmäistä merkkiä vastaavat toisiaan. Eri koodeilla on seuraava yhteys: heksadesimaali desimaali binääri

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
a	10	1010
b	11	1011
c	12	1100
d	13	1101
e	14	1110
f	15	1111
10	16	10000
11	17	10001
12	18	10010

Heksadesimaali- ja binäärijärjestelmillä on konekieliohjelmoinnissa keskeinen merkitys, käsitteleehän tietokone kaikkea tietoa binäärimuodossa. Heksadesimaalijärjestelmän avulla taas on helpompi ilmaista muuten pitkiksi venyvià lukuja, esim. luku 65535 binäärinä (bin) olisi \%1111111111111111, mutta hekadesimaalina (hex) \$ffff
Lukujen oikeanpuoleista bittiä nimitetään LSB:ksi (Least Significant Bit, vähiten merkitsevä bitti) ja vasemmanpuoleista merkkiä MSB:ksi (Most Significant Bit , eniten merkitseva bitti) ja binaarilukujen bitit numeroidaan oikealta vasemmalle $0,1,2,3,4, \ldots$. Siis bitti 0 vastaa 21 0:aa, bitti 1 2) 1 :tä jne. Kahdeksan bitin tietokoneissa sana (Word) vastaa 8:aa bittiä, esim, yhden muisti-

Konekieli - mitä se on? "Sillä voi tehdä hienoja pelejä." "Se on nopea." "Se on vaikeaa." Viimeksi mainittua lukuunottamatta vastaukset pitävät paikkansa. Konekieli on todellakin hyvin nopea, esim. C-64:ssa yhden konekielikäskyn suorittamiseen kuluu aikaa 2... 7 us (0.000002 ... 0.000007 s). Koska konekieli on nopea, sillä saa myös aikaan "hienoja" ohjelmia. Lisäksi konekielen etuna voidaan pitää sitä, että tehtäessä ohjelma kokonaan konekielellä käyttäjä voi hallita koneensa täydellisesti. Tämä tarkoittaa sitä, että käyttäjä voi esim, syrjäyttaä koneen oman käyttöjärjestelmän ja luoda tilalle omansa. Käytännössä esim. ohjelmien automaattinen käynnistys lataamisen jälkeen, listaussuojaus jne. ovat konekieleen kuuluvia ominaisuuksia.
paikan sisältöä. Usein ylimmän bitin, esim. 8 bitin luvuissa bitin 7 ajatellaan olevan luvun etumerkki iten, että " 1 " tarkoittaa negatiivista lukua. Tällöin käsiteltävä lukualue on $-128 \ldots+127$. Negatiiviset luvut saadaan lisåämällä ko. lukuun 256, esim. -5 on

Binäärilukujen tunnuksena käytetään usein prosentin merkkiä (\%) ja heksadesimaalilukujen tunnuksena dollaria (\$). Kymmenjärjestelmän lukuihin ei yleensä liitetä erillistä tunnusta. Seuraavassa tarkastelemme eri

Iukujärjestelmien välisiä muunnoksia, koska on välttämätöntä pystyä siirtymään joustavasti lukujärjestelmästä toiseen ohjelmoinnin sita vaatiessa. Yeensa konekieliohjelmoinnissa kannattaa käyttää heksadesimaalijärjestelmää.
Ajatellaan aluksi esim. desimaalilukua 1986. Tämä luku voidaan esittää kymmenen potenssien summana seuraavasti:
$1986=1^{*} 10^{3}+9^{*} 10^{2}$

$$
+8^{*} 10^{1}+6^{*} 10^{\circ}
$$

Siis ensimmäinen numero ilmaisee tuhannet, toinen sadat
jne Vastaavasti toimitaan 2- ja 16-järjestelmissä, erona on ainoastaan kantaluku. Binääriluku $\% 10110101$ on siis
$1^{*} 2^{7}+0^{*} 2^{6}+1^{*} 2^{5}+1^{*} 2^{4}+0^{*} 2^{3}$ $+1^{*} 2^{2}+0^{*} 2^{1}+1^{*}$
eli desimaaliluvuksi muutettuna $1 * 128+0^{*} 64+1^{*} 32+1^{*} 16+0 * 8$ $+1^{*} 4+0^{*} 2+1^{*} 1=181$. Vastaa vasti voidaan mikä tahansa bi nääriluku muuntaa desimaalilu vuksi. Jatkossa tulemme esittá mään ohjelmaesimerkkejä lukujärjestelmien muunnoksia varten Heksadesimaalilukujen voidaan katsoa muodostuvan siten
että neljä peräkkäistä binääriluvun merkkiä korvataan yhdellä, tätä sarjaa vastaavalla heksadesimaalimerkillä. Näin luvut lyhenevät neljäsosaan alkuperäisestä pituudestaan, mutta muunnokset hex-bin ja bin-hex ovat varsin yksinkertaisia päässälaskuja. Esim. Tarkastellaan lukua \$19af. Se kirjoitettuna edellisten tavoin olisi $1^{*} 16^{3}+9^{*} 16^{2}+10^{*} 16^{1}+15^{*} 16^{6}$

Kun sama luku muutetaan merkki kerrallaan binääriksi, saadaan seuraava lauseke: $\begin{array}{llll}0001 & 1001 & 1010 & 1111\end{array}$ $1 * 16^{3} \quad 9 * 16^{2} \quad 10^{*} 16^{1} \quad 15^{*} 16^{0}$

Numerot yläkulmassa ovat eksponentteja, esim. $1^{*} 16^{3}, 9^{*} 16^{2}$ Kun tulokset yhdistetään, saadaan luku \%0001100110101111.
Kaikki muunnokset noudattavat samaa kaavaa. Eri lukujärjestelmien luvut voidaan esittää järjestelmän kantaluvun potenssien ja numeromerkkien tulojen summana. Myöhemmin annamme joitakin ohjelmaesimerkkejä muunnoksista. Suosittelemme muunnosten harjoittelemista, jotta ne sujuisivat nopeasti, kun varsinainen ohjelmointi alkaa.

Konekieli on tärkeä

Mikrotietokoneen "sydän" on mikroprosessori, jonka "äidin kieli" on konekieli. Suorittaes saan esim. Basic-kielistä ohjelmaa joutuu mikroprosessori käyttämään eräänlaista "sanakirjaa" joka on toteutettu konekielellă Tämä on välttämätöntä, silla yleensä mikroprosessori ei pysty suoraan suorittamaan Basic-yms ohjelmia. On tosin olemassa mik roprosessoreja, joissa on jo val mina esim. Basic-tulkki, mutta näitä ei kuitenkaan käytetä mikrotietokoneissa.

C-64:kään ei siis tekisi mitään ilman konekieliohjelmia, jotka on taltioitu ns. ROM-muisteihin ($\mathrm{ROM}=$ Read Only Memory, lukumuisti). Näille muisteille on ominaista se, että niihin tallennettu tieto säilyy myös ilman sähköä, mutta myös se, ettei niissà olevaa ohjelmaa voida muuttaa Tällaisiin muisteihin on C-64:ssà talletettu esim. Basic-tulkki, kuvaruutueditori, kasetti- ja levy asemien ohjausrutiinit, näppäi mistönluku, kuvaruudun tyhjen nys jne. Kaikki em. on toteutettu konekielellä. Oletko koskaan ajatellut, miten kuvaruutu itseasiassa tyhjennetään? Basicissa se käy helposti printtaamalla chr\$(147), mutta mitä tekeekään tällöin ko nekieli? Mikroprosessori suorit taa silmukan, jossa jokaiseen ku varuutumuistipaikkaan sijoite taan chr\$(32) (väli) ja värimuistipaikkoihin taustan väri. Siis yh teensä $40^{*} 25^{*} 2=2000$ Basicin POKEa vastaavaa käskyä + sil mukkaa varten tarvittavat käskyt Kuitenkin ruutu tyhjenee silmän räpäyksessä!

Mikroprosessorin rakenne
Mikroprosessori sisältää ns. re kisterejä, joita käytetään lähes
kaikkiin tiedonsiirto-operaatioihin. Nämä rekisterit vastaavat tavallaan RAM- (Random Access Memory, luku-kirjoitusmuisti) muistipaikkoja. Niissä olevaa informaatiota voidaan muuttaa ja siirtää konekielen käskyjä käyttäen. Koska 6510 on 8 -bittinen prosessori, siinä on etupäässä 8 bitin rekisterejä. Ainoastaan PC (Program Counter, ohjelma laskuri) on 16 -bittinen. PC:n lisäksi 6510:ssa on akku A, indeksirekisterit X ja Y, pino-osoitin SP (stack pointer) ja statusrekisteri P (Status Register). Seuraavassa käsittelemme jokaista näistä erikseen.
PC tämä on 6510:n ainoa 16 bittinen rekisteri. PC:tä käytetään laskemaan ja säilyttämään kulloinenkin ohjelman kohta, jota ollaan suorittamassa, ts. PC:n avulla mikroprosessori osoittaa tiettyä muistipaikkaa ja noutaa sieltä esim. seuraavan käskyn. Mikroprosessori kasvattaa automaattisesti PC:n arvoa, jotta ohjelma '"kulkisi eteenpäin'". PC:tä voitaisiin havainnollistaa esim. sormella, joka osoittaa muistipaikkaan, jossa ohjelman suorius on menossa. Käyttäjä ei voi muuttaa PC:n arvoa muutoin kuin hyppykäskyjen avulla. Koska PC on 16-bittinen, pystyy 6510-prosessori osoittamaan (käyttämään) suoraan $2 \uparrow 16=$ 65536 tavua muistia (tavu on 8 bittiä ja vastaa yhtä muistipaikkaa). Koska ensimmäistä paikkaa merkitään numerolla 0, on viimeinen nro 65535. Tämän voi todeta esim. käyttämällä Basicin POKE-käskyä. Suurin kelpaava osoitehan on 65535.
SP SP:n avulla mikroprosessori osoittaa tiettyä paikkaa ns. pinomuistissa, stack:issä. Pinomuisti on 6502-pohjaisissa tietokoneissa sivula 1, ts. osoitteissa 256...511. Tätä muistia käytetään tallettamaan parametreja väliaikaisesti, aliohjelman paluuosoitteen säilömiseen yms. Kun prosessori panee pinomuistiin jotakin, SP:n arvo pienenee ja kun prosessori ottaa jotakin stack:istä, SP:n arvo kasvaa. Pinomuistia siis täytetään ylhäältä alaspäin. Käyttäjä voi muuttaa SP:n arvoa, mutta tässä on oltava hyvin varovainen, sillä esim. aliohjelmien paluuosoitteet saattavat tuhoutua ja koko kone "seota" SP:n virheellisen arvon vuoksi. Pinon osoitteen HIGH BYTE (HB, ylimmät 8 bittiä osoitteesta) on aina \%00000001 ja LOW BYTE (LB, alimmat 8 bittiä) ovat SP:arvo.
A Akku on yleensä prosessorin keskeisin rekisteri. Pääosa tiedosta kulkee sen läpi ja sen tiedonkäsittelymahdollisuudet ovat parhaat verrattuina muihin saman prosessorin rekistereihin. Akku on 8-bittinen, ts. se voi sisältää ainoastaan kokonaisluvun 0... 255. Tämän suurempia lukuja ei 6510 pysty käsittelemään kerralla. Tämä saattaa tuntua vakavalta puutteelta, mutta käytännössä sillä tullaan hyvin toimeen. Harva ihminenkään laskee kerralla yhteen esim. luvut 14324 ja 87864. Yleensä yhteenlasku suoritetaan kaksi numeromerkkiä kerrallaan, eli käsitellään vain yhteenlasket-
tavia 0.. 9 (kun taas 6510 käsittelee tarvittaessa kerralla 0...255!). Kuten myöhemmin huomataan, akku on hyvin tärkeä kaikissa konekieliohjelmissa. Akkua käsitteleviä käskyjä ovat esim. yhteen-lasku-, vähennys-, siirto-, lataa-mis-, säilömis- ja vertaamiskäskyt sekä loogiset OR, AND ja EOR (Exclusive OR)-funktiot.

X Indeksirekisteriä X voidaan käyttää esim. silmukkalaskurina tai indeksoituun muistin osoituk seen (esitellään myöhemmin). Indeksirekisteri X voidaan ladata, säilöä, inkrementoida (kasvattaa), dekrementoida (vähentää), verrata jne.

Y Indeksirekisteri Y on hyvin samankaltainen kuin X. Eroavuuksia on lähinnä indeksoidussa osoitusmuodoissa.

P Statusrekisteri liittyy läheisesti akun toimintaan. Se muodostuu seitsemästä ns. lipusta (Flag), joista osa kuvaa esim. akun sisältämän luvun ominaisuuksia. Liput ovat seuraavat: N (negative), V (overflow), B (break command), D (decimal mode), I (IRQ disable), Z (zero flag) ja C (cardisable), Z (zero flag) ja C (car-
гy). Lippujen sijoitus Status-rery). Lippujen sijoitus
kisterissä on seuraava:
$\begin{array}{llllllll}\text { bittinro7 } & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$ lippu N V B D I Z C

Bitti 5 ei ole käytössä, luettaessa status-rekisteriä se on tilassa " 1 '". Lippujen tila on joko " 1 "' (True, tosi) tai " 0 "" (False, epätosi). Konekieleen kuuluvat ns. ehdolliset hyppykäskyt, joilla ohjelman haarautuminen saadaan aikaan. Ne testaavat eräitä lippuja ja vastaavat tavallaan Basicin IF... THEN-rakennetta. Jos ehto on tosi, hyppy suoritetaan, muutoin ohjelman suoritusta jatketaan seuraavasta käskystä.
Eri lippujen toiminnat ovat seuraavat (lisää tietoa lipuista tulee käskyjen yhteydessä):
N Ilmaisee, että edellisen operaation tulos on negatiivinen, ts. tuloksen bitti nro 7 on tilassa "1". Huom! Mikään muistipaikkaan talletuskäsky ei muuta lippujen arvoa, mutta lataaminen muistipaikoista kylläkin! N-lippua testaavat ehdolliset hyppykäskyt BMI ja BPL.

V Ilmaisee, että edellinen operaatio on aiheuttanut ylivuo don bitistä 6 bittiin 7, ts. että esim. yhteenlaskun tulos on muuttanut bittiä 7. Tätä käytetään melko harvoin, etupäässä silloin, kun lasketaan etumerkillisillä luvuilla (bitti 7 etumerkki). Tavallisesti tämä lippu ei ole tarpeen.
V-lippua testaavat ehdolliset hyppykäskyt BVS ja BVC.
B B-lippu ilmaisee, että ohjelman suoritus on keskeytyny BRK (Break) -käskyn ja siirtynyt keskeytysrutiiniin. Tätà selostetaan lähemmin keskeytysten yhteydessä. B-lippua oi testata vain lukemalla sta tusrekisterin arvon.

D D-lippu ilmaisee, että prosessorin yhteen- ja vähennyslaskukäskyt toimivat ns. desimaalimuodossa, ts. lasketaan kymmenjärjestelmän lukuja. Käyttäjä voi muuttaa lipun tilaa käskyillä SED ja CLD tai lataamalla koko statusrekisterin arvon. D-lipun arvoa ei prosessori itse pysty muuttamaan minkään operaation tuloksena, eikä sitä testaavia hyppykäskyjä ole. Tämäkin lippu on hyvin harvoin käytetty, esim. C-64:n Basic-tulkki ei sisällä yhtään desimaalimuotoa käyttävää rutiinia.

I I-lipulla voi käyttäjä estää keskeytyspyyntöjen vaikutuksen ohjelman suoritukseen. Ilippuun vaikuttavat SEI ja CLI-käskyt sekä, kuten kaikkiin lippuihin, statusrekisterin lataaminen. I-lippua ei voi testata muuten kuin lukemalla statuksen arvon. Yleensä testaaminen ei kuitenkaan olekaan tarpeen. Kun prosessori saa keskytyksen, I asettuu automattisesti tilaan "'l" estäen näin uudet keskeytykset. Lisää tietoa keskeytyksistä kertovassa osassa.
Z Z-lippu ilmaisee, että edellisen operaation tulos on nolla, eli KAIKKI bitit tulivat NOLLIKSI. Tämä koskee myös
bittiä 7, vaikka sitä käsiteltäisiinkin etumerkkinä. Z-lippua käyttäjä ei voi muuttaa, mutta sitä testataan ehdollisilla hyp pykäskyillä BNE ja BEQ. Tämä lippu on erittäin tärkeä käytännön ohjelmoinnissa.

C C-lippu eli Carry toimii yhteenlaskuissa eräänlaisena "muistinumerona" ja vähennyslaskuissa siitä 'lainataan'".

Lisäksi sen tilaa voivat muuttaa mm. vertailu- ja siirtokäskyt (ROL, ROR, ASL, LSR) Käyttäjä voi muuttaa C-lipun tilaa SEC- ja CLC-käskyillä C-lippua testaavat BCC- ja BCS-hyppykäskyt ja sillä on myös suurta merkitystä ohjelmissa.
Käyttäjä voi siis muuttaa lippu ja suoraan seuraavilla käskyillä:

SED = aseta desimaalimuoto,	$\mathrm{D}=1$
CLD = nollaa desimaalimuoto,	$\mathrm{D}=0$
SEI = estä keskeytyspyynnöt,	$\mathrm{I}=1$
CLI = salli keskeytyspyynnöt,	$\mathrm{I}=0$
SEC = aseta Carry-lippu,	$\mathrm{C}=1$
CLC $=$ nollaa Carry-lippu,	$\mathrm{C}=0$
CLV = nollaa Overflow-lippu,	$\mathrm{V}=0$

Harjoituksia

Muunna luku 49152 heksade simaaliksi.
2. Ilmoita luku $\% 10100101$ hek sadesimaalina ja desimaalina.
3. Kaikkien lukujärjestelmie yhteen- ja vähennyslaskumenetelmät ovat analogiset. Laske yhteen $\$ 23$ ja $\$ 44$ sekä tarkista tulos muuntamalla molemmat ensin desimaaliluvuiksi. Ilmoita tulos myös binäärinä.
4. Laske $\% 10010+\% 11111010$ (ks. teht. 3)
5. Laske $\$ 23-\% 1011$ ja ilmoita tulos desimaalilukuna.

Vastaukset
seuraavassa POKE\&PEEK-lehdessä. Seuraa vassa osassa tutustutaan konekielen käskyihin ja konekieliohjelman kirjoittamiseen. Lue teksti ajatuksen kanssa, mikäli haluat todella oppia taitavaksi konekieliohjelmoijaksi. Mikäli jokin kohta kaipaa mielestäsi selvennystä, kirjoita, niin pyrimme antamaan lisäselvitystä.

Herra VICström seikkailee tietokonemaailmassa

Miten tehdään tarkkuusgrafiikkaa C-128:n 80 merkin nayttöon? Entä omia merkkejä?
640×200 tarkkuusgrafiikkaa tehdään ns. bit-mapping-menetelmâllä, iota käytetään myös C64:ssa. POKE\&PEEK tuiee julkaisemaan eriilisen artikkelin omien merkkien onjeimoinnista ja bit-mappingista seuraavassa numerossa.

Milloin tulee Suomessa myyntiin Commodore 128 Programmer's Reference Guide?
Kirjaa on jo mainostettu USA:n mikrolehdissä. Viimeisen Commodore Electronicsilta saamamme tiedon mukaan opus tulee kauppojen hyllyille toukokuun aikana. Odotamme innokkaasti.

Kuinka käytetään C128:n Basicin
TRAP-komentoa?
TRAP-käsky on ohjelmaan sisällytettävä virheenetsintätoiminto. Yleensä TRAP-komento sijoitetaan ohjelman ensimmäiselle riville. Komennon jäljessä oleva rivinumero kertoo tietokoneelle, mille ohjelmariville siirrytään, kun ohjelmassa on jokin virhe.
TRAP-käskyn käytössä on huomioitava eräs asia. Jos kyseessä on muuttujan tyyppivirhe, BASICin EVAL-rutiini raportoi virheestä, mutta ei vapauta merkkijonolle varattua tilapäismuistia. Jos ohjelman suoritus jatkuu GOTO, CONT tai TRAP RESUME-käskyllä, kone tulostaa jossakin vaiheessa FORMULA TOO COMPLEX-virheilmoituksen. Tämä ilmiö esiintyy kaikissa

CBM 65xx koneissa, joissa on Ba sicin versio 3.0 tai suurempi. Seu raava mallionjeima selvittänee asiaa:

1000 TRAP 2000
$1010 \mathrm{~K}=$ " ${ }^{2}$ RED' $:$ REM
MUUTTUJAN
TYYPPIVIRHE
1020 STCP
2000 PRINT"'VÄ̈̈RIN'
RESUME
Tässä esimerkissä merkkijonoille varattu tilapäismuisti on iopussa kolmannen kierroksen jälkeen ja tuloksena on virheilmoitus? FORMULA TOO COMPLEX. On gelma on kuitenkin helposti kor jattavissa pienellä lisäyksellä oh jelmaan:

1000 TRAP 2000 1010 K = '"FRED'":REM

MUUTTUJAN
TYYPPIVIRHE

1020 STOP

2000 POKE 24,27:PRINT
"VÄÄRIN":RESUME
Käsky POKE 24,27 palauttaa tila päismuistin osoittimen alkuarvoonsa. Käsky voidaan ohjelmaa vahingoittamatta antaa missä vaiheessa tahansa.

Onko mahdollista kytkeä tavalli nen tietokonemonitori, esim. Philips BM 7502 C128:aan niin, että monitorista saadaan 80 merkkiä/ rivi?
Kyllä on. C128:n RGB-liitännästä löytyy linja, josta saadaan mustavalkoinen 80 merkin kuva tavalli

Lähetä osoitteella:

Oy PCI-Data Ab,
Poke \& Peek!-lehden toimitus, PL 148, 65101 VAASA
Merkitse rasti ruutuun $\begin{array}{ll}\text { Ostetaan } & \square \\ \text { Myydään } & \square \\ \text { Vaihdetaan } & \square\end{array}$

EI LIIKEILMOITUKSILLE. ILMOITUKSESSA SAA

 OLLA ENINTÄÄN 20 SANAA. Kirjoita näin 1. Kirjoita koneella tai tekstaten yksi kirjain ruutuun. 2. Jätä tyhjä ruutu sanojen väliin.3. Vastaus puh. numero ja/tai osoite myös ruudukkoon.

| MASKU 20 mk . Älä lähetä rahaa kirjeessä. Maksu varI mimmin postisiirtotilillemme TA 146529-1 ja maksukuitti ilmoituksen mukana toimitukseemme.

YRITYSOHJELMIA Commodore 64:lle

Asiakaskortisto
Postitustarrat
Laskutus
Reskontra
Karnu
Kirianpito
Hinnoittelu
Hinnoitelu
Tullilomake
Ulinomak
Hinnasio
Y.m. soveilutuksia
yrityksille sovifettuna

ATK-PALVELU

ATSO MÄKINEN
90-370 660 i. $90-721613$
seen videosisäänmenolla varustet tuun monitoriin. Commodore jälleenmyyjiltä iöytyy tarkoituk seen sopiva kaapeii nimeilä C128 RGB/Videokaapeii hintaan 120 ,-

Myydäään

Myydään VIC-20 ja kasettiasema ja Basic kurssi ja 20 peliä. Hinta 500 mk. puh. 924/45234.
Commodore CBM3016, vihreä videonäyttö + nauhuri, konekieiimonitori + IEE-488-Väyiäliitäntä. Veikko Kähkönen, Teerimäentie . 76850 Naarajärvi. Puh. koti 958-81300, זуӧ 958-ї1425.

Handic-tuplapuheiinmodeemi $(V 21+V 23)+$ terminaaiionjelmat. Litäantä suoraan C-64:n tai vastaavaan käyttăjänporttiin Takuu voimassa, tedustelut Kari Kaiju, puh. 90-677797.
Bittilehdet (2-4, 84), ($-12,85$), Printilehdet (11-20, 85). Ee-mans- ja muistio moduulit seka paddlet. Ostan levyaseman + levyjä. pun. 918-878724/Janne.

UUTIA OHJELMISTOA C128:LLE

SUPERBASE 128

64:n tehokas tietokantaohjelmisto on nyt muunnettu C128:lle. Superbase 128 ja Superbase 64 ovat käskykannaltaan identtisiä Superbase 128:n käyttöohje pohjautuu suoraan C64:n Superbaseversioon. Ohjelma on suomenkielinen, samoin käyttöohjeet. Ohjelmien väliset erot ovat seuraa vat:
A. Superbase 128 :ssa voidaan valita joko 40 tai 80 merkin näyttö. B. Superbase 128:ssa on käytettävissä 64 Kt muuttujille ja laskuvissa 64 Kt muuttujille ja lasku-
toimituksille. (Superbase 64 Kt) toimituksille. (Superbase 644 Kt)
C. Superbase 128 käyttää suuC. Superbase 128 käyttää suu-
rempia tiedonsiirtonopeuksia tietokoneen ja levyaseman välillä. D. Superbase 128 sisältää apuohjelman, jolla on mandollista siirtää tietokantoja tai ohjelmia levyasemasta toiseen levyasematyy pistä (1541, 1570, 1571) riippumatta. Tiedostojen kopiointi yhdellä levyasemalla on myös mahdollista.
E. Superbase 128:aa voidaan käyttää samanaikaisesti Superscript 128 tekstinkäsittelyohjelman kanssa.
Ohjehinta 950,-

SUPERSCRIPT 128

Superscript 128 on tekstinkäsittelyohjelma, niille Superbase 128:n käyttäjille, jotka haluavat käyttää tekstinkäsittelyohjelmaa samanaikaisesti tietokantaohjelman kanssa. Tekstinkäsittelykomennot voidaan valita joko menusta tai suorilla komennoilla. Tekstinkäsittelyohjelman sisällä voidaan suorittaa myös yksinkertaisia laskutoimituksia. Ohjelma on englannin kielinen, ohjehinta 950,-

CALCRESULT 128

C128 versio suositusta taulukko laskentaohjelmasta. Suomenkielinen, suomenkieliset käyttöohjeet. Uusi Calcresult 128 pystyy hyödyntämään koko C128:n laajan

Mikäli et vielä ole saanut

-lehteä postitse, täytä tämä kuponki.

Nimi 1
Osoite

Postinumero $\square \square \square$
\square
 osoite
Postinumero
Postitoimipaikka
Minulla on Commodore
keskusyksikkö
Asiakasnumerosi saa
lehden nimietiketistä
I
Lähetä kuponki osoitteella: Oy PCI-Data Ab
PL 148
muistikapasiteetin - työtilan ko ko 64:n Calcresultiin verrattuna on kaksinkertainen. Tärkeänä parannuksena on myös 80 sarakkeen näyttö. Kunkin sarakkeen leveys voidaan nyt erikseen määrätä. Lisänä C128 versiossa on ns. tekstimuoto, joila työsivulle voidaan kirjoittaa tekstiä, nopeasti ja helposti.
OV-hinta 950 ,-

Commodore pienkoneiden käyttäjäiehti

Painos

70.000. Neljäs vuosikerta.

Julkaisija Oy PCI-Data Ab
Päätoimittaja
Johan Hagström
Toimitussihteeri
Maarit Keski-Hannula
Toimitusneuvosto
Johan Hagström
Jukka Kuorikoski
Kati Lehmonen
Maarit Keski-Hannula
Taitto
Kimalainen Oy, Vaasa
Ladonta
Laakakuva Oy, Vaasa
Painopaikka
Vaasa Oy
Toimitus
PL 148
65101 VAASA 10
Puhelin 961-113 611
Puhelin 74145 comi sf
Telefax (961) 110041
Inmoitukset
Maarit Keski-Hannula $2 \mathrm{mk} / \mathrm{pmm}$. Lisävärit: $1 \mathrm{mk} / \mathrm{pmm} /$ lisäväri. Vaihtopörssi enint. 20 sanaa. 20,- tilille TA 187978-0 ja tosite ilmoitustekstin mukana toimitukseen. Ei yrityksille.
Ilmoitusmateriaali lehden seuraavaan numeroon on oltava toimituksella viim. 15.4.-86.

Tilaukset
Asiakaspalvelu
IImestyy
Kuusi kertaa vuodessa. Seuraava numero huhti toukokuussa.
Aineiston oltava toimitukseila 15.4.-86 mennessä. Ei-tilatuista jutuista emme vastaa.

